AG/SAG Mill (Variable Rates): Difference between revisions
Scott Munro (talk | contribs) m (1 revision imported) |
imported>Scott.Munro |
||
| (11 intermediate revisions by the same user not shown) | |||
| Line 6: | Line 6: | ||
== Model theory == | == Model theory == | ||
{{Restricted content}} | |||
{{ | <hide> | ||
[[File:AGSAGVariableRates7.png|thumb|450px|Figure 1. Schematic diagram of internal AG/SAG mill processes (after Napier-Munn et al., 1996).{{Napier-Munn et al. (1996)}}]] | |||
[[File:AGSAGVariableRates8.png|thumb|450px|Figure 3. Variable Rates AG/SAG mill model iterative calculation sequence (after Napier-Munn et al., 1996).{{Napier-Munn et al. (1996)}}]] | |||
The schematic diagram in Figure 1 illustrates the primary processes of ''feed'', ''breakage'', ''classification'' and ''discharge'' occurring within AG/SAG mills. | |||
The Variable Rates AG/SAG model ties these processes together through the ''perfect mixing model'', which is based on a population balance of particles entering the mill, breaking into smaller sizes, and discharging as product. For a mill operating in steady-state, the diagram in Figure 2 below represents the balance for a given size fraction: | |||
::::{| | |||
| style="padding: 10px"|<gallery mode="nolines" widths=950px heights=36px> | |||
File:BallMillPerfectMixing1.png|Figure 2. Schematic diagram of the steady-state population balance adopted by the Variable Rates AG/SAG model. | |||
</gallery> | |||
|} | |||
The steady-state population balance is formulated mathematically as:{{Valery_and_Morrell_(1995)}} | |||
:<math>f_i + \sum_{j=1}^{i-1}A_{ij}R_js_j - (R_is_i-A_{ii}R_is_i) - p_i = 0</math> | |||
where: | |||
* <math>i</math> is the index of the size interval, <math>i = \{1,2,\dots,n\}</math>, <math>n</math> is the number of size intervals | |||
* <math>f_i</math> is the volumetric flow rate of solids of size interval <math>i</math> in the mill feed (m<sup>3</sup>/h) | |||
* <math>p_i</math> is the volumetric flow rate of solids of size interval <math>i</math> in the mill product (m<sup>3</sup>/h) | |||
* <math>s_i</math> is the volume of solids of size interval <math>i</math> in the mill load (m<sup>3</sup>) | |||
* <math>R_i</math> is the breakage rate of solids of size interval <math>i</math> in the mill load (h<sup>-1</sup>) | |||
* <math>A_{ij}</math> is the appearance function, the distribution of particle volume arising from the breakage of a parent particle in size interval <math>j</math> into progeny of size interval <math>i</math> (frac) | |||
As the mill is perfectly mixed, the product is related to the mill contents and discharge rate as: | |||
:<math>p_i=D_is_i</math> | |||
where <math>D_i</math> is the rate of discharge of solids in size interval <math>i</math> from the mill (h<sup>-1</sup>). | |||
Therefore, the mill load at steady-state can be computed from: | |||
:<math>s_i= \dfrac{f_i + \sum\limits_{j=1}^{i-1}{A_{ij} R_j s_j}}{D_i + R_i - A_{ii} R_i}</math> | |||
and the product <math>p_i</math> subsequently determined. | |||
Liquids retained in the mill at steady-state are similarly determined from: | |||
:<math>f_{\rm L} - D_{\rm L} s_{\rm L} = 0</math> | |||
where: | |||
* <math>s_{\rm L}</math> is the load volume of liquids in the mill (m<sup>3</sup>) | |||
* <math>f_{\rm L}</math> is the volumetric feed rate of liquids into the mill (m<sup>3</sup>/h) | |||
* <math>D_{\rm L}</math> is the discharge rate of liquids from the mill, normally assumed to equal <math>D_n</math> (h<sup>-1</sup>). | |||
</hide><div class="user-show"> | |||
=== Calculation sequence === | |||
</div><hide> | |||
The Variable Rates AG/SAG model uses a range of sub-models to quantify the breakage rate (<math>R</math>), appearance function (<math>A</math>), and discharge function (<math>D</math>) terms of the perfect mixing model, and hence compute the mill load (<math>s</math>) and product (<math>p</math>) at steady-state. | |||
These sub-models are strongly interactive, and an iterative calculation sequence is necessary to numerically solve the steady-state population balance. The required calculation sequence is presented in Figure 3. | |||
The sub-models are described in further detail below. | |||
</hide><div class="user-show"> | |||
=== Breakage rates === | |||
</div><hide> | |||
[[File:AGSAGVariableRates12.png|thumb|450px|Figure 4. Breakage rate distribution characterised by cubic spline interpolation.]] | |||
{{Model theory (Text, AG/SAG Mill, Variable Rates, Breakage Rates)|4}} | |||
</hide><div class="user-show"> | |||
=== Discharge rates === | |||
</div><hide> | |||
The discharge rates (<math>D_i</math>) are related to the hold-up of slurry in the mill and particle classification at the discharge grates. | |||
</hide><div class="user-show"> | |||
==== Slurry hold-up ==== | |||
</div><hide> | |||
[[File:AGSAGVariableRates9.png|thumb|450px|Figure 5. Principal dimensions of an AG/SAG mill.]] | |||
The volumetric flow rate of slurry discharged from a grated mill depends on the level of slurry hold-up within the mill, in a manner analogous to flow from the bottom of a filled tank. | |||
In a steady-state model, the discharge flow rate is equal to the feed flow rate by definition. The following empirical relationship is used to estimate slurry hold-up in a grated mill for a given discharge flow rate:{{Napier-Munn et al. (1996)}} | |||
:<math>L_{\rm V} = m_1 \left ( \dfrac{F}{V} \right )^{m_2}</math> | |||
where: | |||
* <math>L_{\rm V}</math> is the fraction of mill volume occupied by below grate size solids and water (v/v) | |||
* <math>F</math> is the volumetric flow rate of slurry discharged from the mill (m<sup>3</sup>/min) | |||
* <math>m_1</math> is a constant related to grate design and mill speed | |||
* <math>m_2</math> is a constant assumed to take the value of 0.5.{{Kojovic et al. (2012)}} | |||
The volume of the mill, <math>V</math>, is calculated as the sum of a cylinder and two right circular frustums:{{Gupta and Yan (2016)}} | |||
:<math>V = \pi {R_{\rm m}}^2L + 2 \cdot \bigg[ \dfrac{\pi}{3} (R_{\rm m} - R_{\rm t}) \cdot \tan \alpha_{\rm c} \cdot \left ( {R_{\rm m}}^{2} + R_{\rm m} R_{\rm t} + {R_{\rm t}}^{2} \right) \bigg]</math> | |||
where: | |||
* <math>R_{\rm m}</math> is the radius of the mill inside the liners (m), equal to half of the diameter of the mill inside the liners, <math>D</math> (m) | |||
* <math>R_{\rm t}</math> is the radius of the discharge trunnion (m), equal to half of the diameter of the discharge trunnion, <math>D_{\rm t}</math> (m) | |||
* <math>L</math> is the length of the cylindrical (belly) section of the mill (m) | |||
* <math>\alpha_{\rm c}</math> is the cone angle, measured as the angular displacement of the cone surface from the vertical direction (rad) | |||
The principal dimensions of an AG/SAG mill required to compute mill volume and other properties are shown in Figure 5. | |||
Morrell and Stephenson (1996) related discharge flow rate to slurry hold-up, grate design and mill speed with the following semi-empirical relation:{{Morrell and Stephenson (1996)}} | |||
:<math>Q_{\rm m} = k_{\rm m} {J_{\rm pm}}^2 \gamma^{2.5} A \phi^{-1.34} D^{0.5}</math> | |||
where | |||
* <math>Q_{\rm m}</math> is the volumetric discharge rate of slurry through the grinding media zone (m<sup>3</sup>/h) | |||
* <math>k_{\rm m}</math> is the slurry discharge coefficient for the grinding media zone | |||
* <math>J_{\rm pm}</math> is the net fractional slurry hold-up in the grinding media interstices (v/v) | |||
* <math>A</math> is the total open area of grate apertures (m<sup>2</sup>) | |||
* <math>\phi</math> is the fraction critical speed of the mill (frac) | |||
* <math>D</math> is the mill diameter (m) | |||
and the mean radial position of the grate apertures, <math>\gamma</math> (m/m), is defined as: | |||
:<math>\gamma = \frac{\sum{r_ia_i}}{r_{\rm m} \sum{a_i}}</math> | |||
where: | |||
* <math>a_i</math> is the open area of all holes (m<sup>2</sup>) at radial position <math>r_i</math> (m) | |||
* <math>r_{\rm m}</math> is the radius of the mill inside the liners (m) | |||
In addition to fine slurry, particles up to the grate aperture size will also discharge from the mill. To estimate total discharge flow rate, <math>Q</math> (m<sup>3</sup>/h), Morrell and Stephenson (1996) suggest the following correction:{{Morrell and Stephenson (1996)}} | |||
:<math>Q = k_{\rm g} Q_{\rm m}</math> | |||
where <math>k_{\rm g}</math> is a factor to account for coarse material, and taking the values shown in Table 2. | |||
:{| class="wikitable" | |||
|+ Table 2. Applied values for <math>k_{\rm g}</math>.{{Morrell and Stephenson (1996)}} | |||
|- | |||
! Aperture !! <math>k_{\rm g}</math> | |||
|- | |||
| Grates only; <19mm || 1.07 | |||
|- | |||
| Grates only; 19mm - 28mm|| 1.125 | |||
|- | |||
| Grates >38mm or pebble ports || 1.2 | |||
|} | |||
The value of <math>m_1</math> for a given grate design and mill can be determined by observing that <math>L_{\rm V} = J_{\rm pm}</math> and <math>F = Q \big / 60</math> in the above equations, i.e.:{{Kojovic et al. (2012)}} | |||
:<math>m_1 \left ( \dfrac{Q}{60V} \right )^{0.5} = {k_{\rm g}}^{-0.5} {k_{\rm m}}^{-0.5} Q^{0.5} \gamma^{-1.25} A^{-0.5} \phi^{0.67} D^{-0.25}</math> | |||
The mill volume, <math>V</math>, can expressed as the product of the mill cross sectional area and an ''equivalent grinding length'', <math>L_{\rm eq}</math> (m), i.e.: | |||
:<math>V = \pi \left ( \dfrac{D}{2} \right )^2 L_{\rm eq} \implies L_{\rm eq} = \dfrac{V}{\pi \left ( \frac{D}{2} \right )^2}</math> | |||
Furthermore, the total open area of the grates, <math>A</math> (m<sup>2</sup>), can be replaced with an expression combining the grate ''open area fraction'', <math>A_{\rm OF}</math> (m<sup>2</sup>/m<sup>2</sup>), and mill cross-sectional area: | |||
:<math>A = \pi \left ( \dfrac{D}{2} \right )^2 A_{\rm OF}</math> | |||
Replacing the <math>V</math> and <math>A</math> terms in the <math>m_1</math> equation above yields: | |||
:<math>m_1 = \sqrt{60} \cdot ({k_{\rm g}} {k_{\rm m}})^{-0.5} \gamma^{-1.25} {A_{\rm OF}}^{-0.5} \phi^{0.67} D^{-0.25} {L_{\rm eq}}^{0.5}</math> | |||
Thus, slurry hold-up, <math>L_{\rm V}</math>, can be computed for a given feed/discharge flow rate, grate design and mill. | |||
</hide><div class="user-show"> | |||
==== Classification and discharge ==== | |||
</div><hide> | |||
[[File:AGSAGVariableRates10.png|thumb|450px|Figure 6. Classification function, <math>C_i</math>, with pebble port open are fraction, <math>f_p</math>, specified.]] | |||
[[File:AGSAGVariableRates11.png|thumb|450px|Figure 7. Classification function, <math>C_i</math>, where pebble port open are fraction, <math>f_p</math>, is zero, i.e grates only.]] | |||
{{Model theory (Text, AG/SAG Mill, Variable Rates, Classification)}} | |||
Figure 6 shows an example classification function with pebble ports included, whilst Figure 7 shows the same function with a grate-only mill. | |||
The value of <math>d_{\rm max}</math> is adjusted during the calculation sequence (Figure 3) to ensure the fraction of solids less than <math>x_{\rm g}</math> plus water retained in the mill load computed by the perfect mixing population balance matches the slurry hold-up determined by the [[AG/SAG Mill (Variable Rates)#Slurry_flow|slurry flow]] calculations. | |||
</hide><div class="user-show"> | |||
=== Appearance function === | |||
{{Model theory (Text, AG/SAG Mill, Variable Rates, Appearance Function)}} | |||
=== Mill power === | |||
</div><hide> | |||
The Variable Rates AG/SAG model includes an implementation of the [[Tumbling Mill (Power, Morrell Continuum)|Morrell Continuum]] tumbling mill power model. The predicted mill power draw is not utilised by the Variable Rates model formulation in any manner, and is provided for information only. | |||
</hide><div class="user-show"> | |||
==== Charge properties ==== | |||
</div><hide> | |||
The power draw prediction requires an estimate of <math>J_{\rm t}</math> (v/v), the fraction of mill volume occupied by the charge, which includes coarse ore, balls, slurry, and void spaces. | |||
Morrell (1992) provides relations for the mass of coarse ore, slurried ore, water and balls in a mill.{{Morrell (1992)}} Converting from mass to fraction of mill volume, these relations are: | |||
:<math>\frac{V_{\rm co}}{V} = (J_{\rm t} - J_{\rm B})(1 - \varepsilon), \quad \frac{V_{\rm so}}{V} = J_{\rm t} \varepsilon U S, \quad \frac{V_{\rm L}}{V} = J_{\rm t} \varepsilon U (1 - S), \quad \frac{V_{\rm B}}{V} = J_{\rm B} (1 - \varepsilon)</math> | |||
where: | |||
* <math>V_{\rm co}</math>, <math>V_{\rm so}</math>, <math>V_{\rm L}</math>, and <math>V_{\rm B}</math> are the volumes of coarse ore, slurried ore, liquids, and balls in the mill, respectively (m<sup>3</sup>) | |||
* <math>S</math> is the volume fraction of solids in the mill discharge (v/v) | |||
* <math>U</math> is the fraction of void space between the coarse ore particles and balls that is filled with slurry (v/v) | |||
The total volume of ore in the mill, <math>V_{\rm o}</math> (m<sup>3</sup>), is computed by the perfect mixing model, i.e.: | |||
:<math>V_{\rm o} = \sum_{i=1}^n s_i</math> | |||
Subtracting the slurried ore component from the total ore volume, the coarse ore volume is: | |||
:<math>\frac{V_{\rm co}}{V} = \frac{V_{\rm o}}{V} - \frac{V_{\rm so}}{V} \implies (J_{\rm t} - J_{\rm B})(1 - \varepsilon) = \frac{\sum_{i=1}^n s_i}{V} - J_{\rm t} \varepsilon U S</math> | |||
and rearranging for <math>J_{\rm t}</math> yields: | |||
:<math>J_{\rm t} = \dfrac{J_{\rm B} (\varepsilon - 1) - \frac{\sum_{i=1}^n s_i}{V}}{\varepsilon (1 - U S) - 1}</math> | |||
The value of <math>U</math> in the above equation is unknown, and is itself a function of <math>J_{\rm t}</math>. To simplify the calculations, <math>J_{\rm t}</math> is estimated for a given mill load and discharge by assuming <math>U = 1</math>. | |||
Having computed an estimate for <math>J_{\rm t}</math>, the value of <math>U</math> may be approximated by: | |||
:<math>U = \dfrac{L_{\rm V}}{\varepsilon J_{\rm t}}</math> | |||
and the apparent density of the charge, <math>\rho_{\rm c}</math>, is:{{Morrell (1996a)}} | |||
:<math>\rho_{\rm c} = \frac{J_{\rm t} \rho_{\rm S} (1 - \varepsilon + \varepsilon U S) + J_{\rm B}( \rho_{\rm B} - \rho_{\rm S})(1 - \varepsilon) + J_{\rm t} \varepsilon U (1 - S)}{J_{\rm t}}, \quad U \leq 1</math> | |||
</hide><div class="user-show"> | |||
==== Power draw ==== | |||
</div><hide> | |||
:''Main article'': [[Tumbling Mill (Power, Morrell Continuum)]] | |||
This implementation of the Variable Rates AG/SAG model applies Morrell's (1996) tumbling mill power draw equations for a grated mill which include terms for the conical end sections of the mill.{{Morrell (1996a)}}{{Bueno et al. (2013)}} | |||
The values of <math>J_{\rm t}</math>, <math>U</math>, and <math>\rho_{\rm c}</math>, plus mill dimensions and rotational speed are inputs to the power draw estimation equations. | |||
The equations return the following charge position and power draw results: | |||
* The angular position of the charge shoulder, <math>\theta_{\rm S}</math> (rad) | |||
* The angular position of the charge toe, <math>\theta_{\rm T}</math> (rad) | |||
* The charge surface radius, <math>r_{\rm i}</math> (m) | |||
* The no-load power of the mill, <math>P_{\rm NoLoad}</math> (kW) | |||
* The net power of the mill, <math>P_{\rm Net}</math> (kW) | |||
* The gross power of the mill, <math>P_{\rm Gross}</math> (kW) | |||
The complete equations are excluded here for brevity and are available at the article link above. | |||
</hide><div class="user-show"> | |||
=== Internal mesh series === | |||
</div><hide> | |||
{{Model theory (Text, AG/SAG Mill, Variable Rates, Internal Mesh)}} | |||
</hide><div class="user-show"> | |||
=== Multicomponent modelling === | |||
</div><hide> | |||
{{Model theory (Text, AG/SAG Mill, Variable Rates, Multicomponent)}} | |||
</hide><div class="user-show"> | |||
=== Additional notes === | |||
</div><hide> | |||
</hide><div class="user-show"> | |||
==== Breakage rates and mill load ==== | |||
</div><hide> | |||
An important, and potentially overlooked, limitation of the Variable Rates AG/SAG mill model is the insensitivity of the breakage rate relationships to mill load. Mill simulations should therefore use mill loads close or equal to the load observed during model fitting, or 25% for design activities.{{Bailey et al. (2009)}} | |||
</hide><div class="user-show"> | |||
==== Slurry pool ==== | |||
</div><hide> | |||
Various published descriptions of the Variable Rates AG/SAG mill suggest that slurry pooling phenomena are excluded from slurry hold-up and power draw estimations.{{Morrell and Morrison (1996)}}{{Kojovic et al. (2012)}}{{Bueno et al. (2013)}} | |||
This implementation similarly excludes slurry pooling, and any model results returning values of <math>U > 1</math> should be inspected carefully. | |||
</hide> | |||
== Excel == | == Excel == | ||
| Line 13: | Line 286: | ||
The Variable Rates AG/SAG mill model may be invoked from the Excel formula bar with the following function call: | The Variable Rates AG/SAG mill model may be invoked from the Excel formula bar with the following function call: | ||
<syntaxhighlight lang="vb">=mdUnit_AGSAG_VariableRates(Parameters as Range, Size as Range, MillNewFeed | <syntaxhighlight lang="vb">=mdUnit_AGSAG_VariableRates(Parameters as Range, Size as Range, MillNewFeed as Range, OreSG as Range, BallSizing as Range, RConst as Range, OreBreakageParams as Range, Optional MillRecycleFeed as Range = Nothing)</syntaxhighlight> | ||
{{Excel (Text, Help, No Arguments)}} | {{Excel (Text, Help, No Arguments)}} | ||
| Line 21: | Line 294: | ||
{{Excel (Text, Inputs)}} | {{Excel (Text, Inputs)}} | ||
:<math>Parameters= | :<math>\mathit{Parameters} = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
D\text{ (m)}\\ | D\text{ (m)}\\ | ||
| Line 28: | Line 301: | ||
\alpha_{c}\text{ (deg.)}\\ | \alpha_{c}\text{ (deg.)}\\ | ||
\phi\text{ (frac)}\\ | \phi\text{ (frac)}\\ | ||
A_{\rm OF}\text{ (m}^{\text{2}}\text{)}\\ | |||
f_{\rm p}\text{ (m}^2\text{/m}^2\text{)}\\ | f_{\rm p}\text{ (m}^2\text{/m}^2\text{)}\\ | ||
x_{\rm p}\text{ (mm)}\\ | x_{\rm p}\text{ (mm)}\\ | ||
| Line 34: | Line 307: | ||
x_{\rm m}\text{ (mm)}\\ | x_{\rm m}\text{ (mm)}\\ | ||
\gamma\text{ (m/m)}\\ | \gamma\text{ (m/m)}\\ | ||
k_{\rm m}\text{ (-)}\\ | |||
J_{\rm B}\text{ (v/v)}\\ | J_{\rm B}\text{ (v/v)}\\ | ||
\rho_{\rm B}\text{ (t/m}^3\text{)}\\ | \rho_{\rm B}\text{ (t/m}^3\text{)}\\ | ||
d_{\rm B}\text{ (mm)}\\ | d_{\rm B,Top}\text{ (mm)}\\ | ||
F_{80}\text{ (mm)}\\ | |||
d_1\text{ (mm)}\\ | |||
\varepsilon\text{ (v/v)}\\ | \varepsilon\text{ (v/v)}\\ | ||
(Q_{\rm M,F})_{\rm L}\text{ (t/h)}\\ | (Q_{\rm M,F})_{\rm L}\text{ (t/h)}\\ | ||
\rho_{\rm L}\text{ (t/m}^{\text{3}}\text{)}\\ | \rho_{\rm L}\text{ (t/m}^{\text{3}}\text{)}\\ | ||
u\\ | |||
v\\ | |||
\end{bmatrix},\;\;\;\;\;\; | \end{bmatrix},\;\;\;\;\;\; | ||
Size = \begin{bmatrix} | \mathit{Size} = \begin{bmatrix} | ||
\hat{d}_{1}\text{ (mm)}\\ | |||
\vdots\\ | \vdots\\ | ||
\hat{d}_r\text{ (mm)}\\ | |||
\end{bmatrix},\;\;\;\;\;\; | \end{bmatrix},\;\;\;\;\;\; | ||
MillNewFeed= \begin{bmatrix} | \mathit{MillNewFeed} = \begin{bmatrix} | ||
(Q_{\rm M,F})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,F})_{1m}\text{ (t/h)}\\ | (Q_{\rm M,F})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,F})_{1m}\text{ (t/h)}\\ | ||
\vdots & \ddots & \vdots\\ | \vdots & \ddots & \vdots\\ | ||
(Q_{\rm M,F})_{ | (Q_{\rm M,F})_{r1}\text{ (t/h)} & \dots & (Q_{\rm M,F})_{rm}\text{ (t/h)}\\ | ||
\end{bmatrix},\;\;\;\;\;\; | \end{bmatrix},\;\;\;\;\;\; | ||
\mathit{OreSG} = \begin{bmatrix} | |||
( | (\rho_{\rm S})_{1}\text{ (t/m}^\text{3}\text{)} & \dots & (\rho_{\rm S})_m\text{ (t/m}^\text{3}\text{)}\\ | ||
\end{bmatrix},\;\;\;\;\;\; | |||
</math> | |||
\end{bmatrix} | |||
:<math> | :<math> | ||
\mathit{BallSizing} = \begin{bmatrix} | |||
( | (d_{\rm B})_1 \text{ (mm)} & (\mathit{MF}_{\rm B})_1\text{ (}%\text{ w/w)}\\ | ||
\vdots& \vdots\\ | |||
(d_{\rm B})_s \text{ (mm)} & (\mathit{MF}_{\rm B})_s\text{ (}%\text{ w/w)}\\ | |||
\end{bmatrix},\;\;\;\;\;\; | \end{bmatrix},\;\;\;\;\;\; | ||
\mathit{RConst} = \begin{bmatrix} | |||
\mathit{RConst}_1 \text{ (} \ln \rm h^{-1} \text{)}\\ | |||
\vdots\\ | \vdots\\ | ||
\mathit{RConst}_5 \text{ (} \ln \rm h^{-1} \text{)}\\ | |||
\end{bmatrix},\;\;\;\;\;\; | \end{bmatrix},\;\;\;\;\;\; | ||
\mathit{OreBreakageParams} = | |||
\begin{bmatrix} | |||
\ | A_1\text{ (}%\text{ w/w)} & \dots & A_m\text{ (}%\text{ w/w)}\\ | ||
b_1 & \dots & b_m\\ | |||
\end{bmatrix} | (t_{\rm a})_1\text{ (}%\text{ w/w)} & \dots & (t_{\rm a})_m\text{ (}%\text{ w/w)}\\ | ||
\end{bmatrix},\quad | |||
\mathit{MillRecycleFeed} = \begin{bmatrix} | |||
\begin{bmatrix} | (Q_{\rm M,R})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,R})_{1m}\text{ (t/h)}\\ | ||
\vdots & \ddots & \vdots\\ | |||
(Q_{\rm M,R})_{r1}\text{ (t/h)} & \dots & (Q_{\rm M,R})_{rm}\text{ (t/h)}\\ | |||
( | \end{bmatrix}^* | ||
\end{bmatrix} | |||
</math> | </math> | ||
where: | where: | ||
* <math>(Q_{\rm M,F})_{\rm L}</math> is the mass flow feed rate of liquids into the mill (t/h) | * <math>(Q_{\rm M,F})_{\rm L}</math> is the mass flow feed rate of liquids into the mill (t/h) | ||
* <math>\rho_{\rm L}</math> is the Specific Gravity or density of liquids in the feed (- or t/m<sup>3</sup>) | * <math>\rho_{\rm L}</math> is the Specific Gravity or density of liquids in the feed (- or t/m<sup>3</sup>) | ||
* <math> | * <math>u</math> is an index of the Appearance function to view in the results | ||
* <math> | * <math>v</math> is an index of the Appearance function to view in the results | ||
* <math>m</math> is the number of ore types | * <math>m</math> is the number of ore types | ||
* <math> | * <math>r</math> is the number of intervals of the external mesh series | ||
* <math> | * <math>s</math> is the number of intervals of the ball mesh series below the top size, including the submesh | ||
* <math> | * <math>\hat{d}_i</math> is the size of the external square mesh interval that feed mass is retained on (mm) | ||
* <math>\hat{d}_{i+1}<\hat{d}_i<\hat{d}_{i-1}</math>, i.e. descending size order from top size (<math>\hat{d}_{1}</math>) to sub mesh (<math>\hat{d}_{p}=0</math>) | |||
* <math>(d_{\rm B})_i</math> is the size of the square mesh interval that balls are retained on (mm) | |||
* <math>\mathit{MF}_{\rm B}</math> is the mass fraction | * <math>(\mathit{MF}_{\rm B})_i</math> is the mass fraction of balls retained on ball mesh series interval <math>i</math> (% w/w) | ||
* <math> | * <math>^*</math> indicates the <math>\mathit{MillRecycleFeed}</math> array is an optional input parameter, and is set to null if omitted | ||
=== Results === | === Results === | ||
| Line 146: | Line 390: | ||
\text{Iterations}\\ | \text{Iterations}\\ | ||
\text{Iteration error}\\ | \text{Iteration error}\\ | ||
\text{ | V\text{ (m}^{\text{3}}\text{)}\\ | ||
\text{Mill speed (rpm)}\\ | \text{Mill speed (rpm)}\\ | ||
Q_{\rm V,F}\\ | Q_{\rm V,F}\\ | ||
| Line 158: | Line 402: | ||
m_1\text{ (-)}\\ | m_1\text{ (-)}\\ | ||
m_2\text{ (-)}\\ | m_2\text{ (-)}\\ | ||
d_{\rm | d_{\rm max}\text{ (h}^{-1}\text{)}\\ | ||
S_{20}\text{ (mm)}\\ | S_{20}\text{ (mm)}\\ | ||
E_q\text{ (kWh)}\\ | |||
\rho_{\rm c}\text{ (t/m}^3\text{)}\\ | \rho_{\rm c}\text{ (t/m}^3\text{)}\\ | ||
\theta_{\rm S}\text{ (rad)}\\ | \theta_{\rm S}\text{ (rad)}\\ | ||
| Line 175: | Line 419: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
\hat{d}_1\text{ (mm)}\\ | |||
\vdots\\ | \vdots\\ | ||
\hat{d}_q\text{ (mm)} | |||
\end{bmatrix} | \end{bmatrix} | ||
| Line 185: | Line 429: | ||
(Q_{\rm M,P})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,P})_{1m}\text{ (t/h)}\\ | (Q_{\rm M,P})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,P})_{1m}\text{ (t/h)}\\ | ||
\vdots & \ddots & \vdots\\ | \vdots & \ddots & \vdots\\ | ||
(Q_{\rm M,P})_{ | (Q_{\rm M,P})_{q1}\text{ (t/h)} & \dots & (Q_{\rm M,P})_{qm}\text{ (t/h)}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
| Line 191: | Line 435: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
(M_{\rm S})_{11}\text{ (t | (M_{\rm S})_{11}\text{ (t)} & \dots & (M_{\rm S})_{1m}\text{ (t)}\\ | ||
\vdots & \ddots & \vdots\\ | \vdots & \ddots & \vdots\\ | ||
(M_{\rm S})_{ | (M_{\rm S})_{q1}\text{ (t)} & \dots & (M_{\rm S})_{qm}\text{ (t)}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
| Line 201: | Line 445: | ||
d_1\text{ (mm)}\\ | d_1\text{ (mm)}\\ | ||
\vdots\\ | \vdots\\ | ||
d_n\text{ (mm)} | |||
\end{bmatrix} | \end{bmatrix} | ||
| Line 208: | Line 452: | ||
\bar{d}_1\text{ (mm)}\\ | \bar{d}_1\text{ (mm)}\\ | ||
\vdots\\ | \vdots\\ | ||
\bar{d} | \bar{d}_n\text{ (mm)}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
| Line 216: | Line 460: | ||
D_{1}\left(\text{h}^\text{-1}\right)\\ | D_{1}\left(\text{h}^\text{-1}\right)\\ | ||
\vdots\\ | \vdots\\ | ||
D_n\left(\text{h}^\text{-1}\right)\\ | |||
\end{bmatrix} | \end{bmatrix} | ||
| Line 224: | Line 468: | ||
R_{1}\left(\text{h}^\text{-1}\right)\\ | R_{1}\left(\text{h}^\text{-1}\right)\\ | ||
\vdots\\ | \vdots\\ | ||
R_n\left(\text{h}^\text{-1}\right)\\ | |||
\end{bmatrix} | \end{bmatrix} | ||
| Line 232: | Line 476: | ||
(E_{\rm cs})_{1}\text{ (kWh/t)}\\ | (E_{\rm cs})_{1}\text{ (kWh/t)}\\ | ||
\vdots\\ | \vdots\\ | ||
(E_{\rm cs}) | (E_{\rm cs})_n\text{ (kWh/t)}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
| Line 238: | Line 482: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
A_{ | A_{u1}\text{ (frac)}\\ | ||
\vdots\\ | \vdots\\ | ||
A_{ | A_{un}\text{ (frac)}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
| Line 246: | Line 490: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
A_{ | A_{v1}\text{ (frac)}\\ | ||
\vdots\\ | \vdots\\ | ||
A_{ | A_{vn}\text{ (frac)}\\ | ||
\end{bmatrix}\\ | \end{bmatrix}\\ | ||
| Line 283: | Line 527: | ||
* <math>\text{Iteration error}</math> is the numerical error of the converged load approximation | * <math>\text{Iteration error}</math> is the numerical error of the converged load approximation | ||
* <math>Q_{\rm V,F}</math> is the flow rate of pulp into the mill (m<sup>3</sup>/h) | * <math>Q_{\rm V,F}</math> is the flow rate of pulp into the mill (m<sup>3</sup>/h) | ||
* <math>\text{Mill speed}</math> is the [[Tumbling Mill (Speed)|rotational rate of the mill]] (rpm) | * <math>\text{Mill speed}</math> is the [[Tumbling Mill (Speed)|rotational rate of the mill]] (rpm) | ||
* <math>M_{\rm S}</math> is the mass of ore solids in the mill (t) | * <math>M_{\rm S}</math> is the mass of ore solids in the mill (t) | ||
| Line 289: | Line 532: | ||
* <math>M_{\rm B}</math> is the mass of balls in the mill (t) | * <math>M_{\rm B}</math> is the mass of balls in the mill (t) | ||
* <math>M</math> is the total mass of ore, liquids and balls in the mill (t) | * <math>M</math> is the total mass of ore, liquids and balls in the mill (t) | ||
* <math>Q_{\rm M,P}</math> is product mass flow rate (t/h) | * <math>Q_{\rm M,P}</math> is product mass flow rate (t/h) | ||
* <math>\bar{d}_i</math> is the [[Conversions|geometric mean size]] of the internal mesh series interval that mass is retained on (mm) | * <math>\bar{d}_i</math> is the [[Conversions|geometric mean size]] of the internal mesh series interval that mass is retained on (mm) | ||
=== Example === | === Example === | ||
| Line 317: | Line 541: | ||
{| | {| | ||
|- style="vertical-align:top;" | |- style="vertical-align:top;" | ||
| [[File:AGSAGVariableRates1.png|left|frame|Figure | | [[File:AGSAGVariableRates1.png|left|frame|Figure 8. Example showing the selection of the '''Parameters''' (blue frame) array in Excel.]] | ||
| [[File:AGSAGVariableRates2.png|left|frame|Figure | | [[File:AGSAGVariableRates2.png|left|frame|Figure 9. Example showing the selection of the '''Size''' (dark red frame), '''OreSG''' (green frame), '''MillNewFeed''' (purple frame) and '''MillRecycleFeed''' (light red frame) arrays in Excel.]] | ||
|} | |} | ||
{| | {| | ||
|- style="vertical-align:top;" | |- style="vertical-align:top;" | ||
| [[File:AGSAGVariableRates3.png|left|frame|Figure | | [[File:AGSAGVariableRates3.png|left|frame|Figure 10. Example showing the selection of the '''BallSizing''' (purple frame), '''RConst''' (brown frame), and '''OreBreakageParams''' (teal frame) arrays in Excel.]] | ||
| [[File:AGSAGVariableRates4.png|left|frame|Figure | | [[File:AGSAGVariableRates4.png|left|frame|Figure 11. Example showing the outline of the '''Results''' (light blue frame) array in Excel.]] | ||
|} | |} | ||
| Line 332: | Line 556: | ||
{{SysCAD (Page, Mill, DLL*Mill)|PowerModels=true|MediaTraj=true|MediaStrings=true}} | {{SysCAD (Page, Mill, DLL*Mill)|PowerModels=true|MediaTraj=true|MediaStrings=true}} | ||
{{SysCAD (Page, AG/SAG Mill, Variable Rates, Mill)}} | |||
{{SysCAD ( | |||
{{SysCAD (Page, AG/SAG Mill, Variable Rates, Ore)}} | |||
{{SysCAD (Page, AG/SAG Mill, Variable Rates, Results)|Steady-state=true}} | |||
{{ | {{SysCAD (Page, AG/SAGMill, Variable Rates, Ri/Di)}} | ||
{{SysCAD (Page, AG/SAGMill, Variable Rates, Load)}} | |||
{{SysCAD (Page, Tumbling Mill, Power)|modelpage={{SysCAD (Text, UnitType Prefix)}}Mill|HF=true|MorrellC=true|MorrellE=true|MorrellD=true|HildenPowell=true}} | |||
{{ | {{SysCAD (Page, Tumbling Mill, MediaStrings)|modelpage={{SysCAD (Text, UnitType Prefix)}}Mill}} | ||
{{SysCAD (Text, | {{SysCAD (Page, Tumbling Mill, MediaTraj)|modelpage={{SysCAD (Text, UnitType Prefix)}}Mill}} | ||
{{SysCAD (Page, About)}} | |||
== See also == | |||
* [[AG/SAG Mill (Variable Rates, Dynamic)]] | |||
== External links == | |||
* [https://help.syscad.net/Met_Dynamics_-_Mill Met Dynamics - Mill (help.syscad.net)] | |||
* [https://help.syscad.net/Example_-_09_Met_Dynamics_Projects#Crushing_and_Grinding_Example Crushing and Grinding Example project (help.syscad.net)] | |||
* [https://help.syscad.net/Example_-_09_Met_Dynamics_Projects#Crushing,_Grinding_and_Flotation_Example Crushing, Grinding, and Flotation Example project (help.syscad.net)] | |||
== References == | == References == | ||
Latest revision as of 09:20, 9 July 2025
Description
This article describes an implementation of the Autogenous (AG) and Semi-Autogenous (SAG) mill model originated by Leung (1987) and extended with variable breakage rates by Morrell and Morrison (1996).[1][2][3]
The formulation is referred to in the associated literature as the "Variable Rates" model (Morrell et al., 2001).[4]
Model theory
Calculation sequence
Breakage rates
Discharge rates
Slurry hold-up
Classification and discharge
Appearance function
High energy
Ball load
Low energy
Combined appearance function
Mill power
Charge properties
Power draw
Internal mesh series
Multicomponent modelling
Additional notes
Breakage rates and mill load
Slurry pool
Excel
The Variable Rates AG/SAG mill model may be invoked from the Excel formula bar with the following function call:
=mdUnit_AGSAG_VariableRates(Parameters as Range, Size as Range, MillNewFeed as Range, OreSG as Range, BallSizing as Range, RConst as Range, OreBreakageParams as Range, Optional MillRecycleFeed as Range = Nothing)
Invoking the function with no arguments will print Help text associated with the model, including a link to this page.
Inputs
The required inputs are defined below in matrix notation with elements corresponding to cells in Excel row () x column () format:
where:
- is the mass flow feed rate of liquids into the mill (t/h)
- is the Specific Gravity or density of liquids in the feed (- or t/m3)
- is an index of the Appearance function to view in the results
- is an index of the Appearance function to view in the results
- is the number of ore types
- is the number of intervals of the external mesh series
- is the number of intervals of the ball mesh series below the top size, including the submesh
- is the size of the external square mesh interval that feed mass is retained on (mm)
- , i.e. descending size order from top size () to sub mesh ()
- is the size of the square mesh interval that balls are retained on (mm)
- is the mass fraction of balls retained on ball mesh series interval (% w/w)
- indicates the array is an optional input parameter, and is set to null if omitted
Results
The results are displayed in Excel as an array corresponding to the matrix notation below:
where:
- is the number of internal computation steps required to converge the load
- is the numerical error of the converged load approximation
- is the flow rate of pulp into the mill (m3/h)
- is the rotational rate of the mill (rpm)
- is the mass of ore solids in the mill (t)
- is the mass of liquids in the mill (t)
- is the mass of balls in the mill (t)
- is the total mass of ore, liquids and balls in the mill (t)
- is product mass flow rate (t/h)
- is the geometric mean size of the internal mesh series interval that mass is retained on (mm)
Example
The images below show the selection of input arrays and output results in the Excel interface.
SysCAD
The sections and variable names used in the SysCAD interface are described in detail in the following tables.
MD_Mill page
The first tab page in the access window will have this name.
| Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
|---|---|---|
| Tag | Display | This name tag may be modified with the change tag option. |
| Condition | Display | OK if no errors/warnings, otherwise lists errors/warnings. |
| ConditionCount | Display | The current number of errors/warnings. If condition is OK, returns 0. |
| GeneralDescription / GenDesc | Display | This is an automatically generated description for the unit. If the user has entered text in the 'EqpDesc' field on the Info tab (see below), this will be displayed here.
If this field is blank, then SysCAD will display the unit class ID. |
| Requirements | ||
| On | CheckBox | This enables the unit. If this box is not checked, then the material will pass straight through the mill with no change to the size distribution. |
| NumParallelUnits | Input | The number of parallel, identical units to simulate:
|
| Method | Fixed Discharge | The discharge particle size distribution is user defined. Different distributions can be used for different solids. |
| AG/SAG (Variable Rates) | The Variable Rates AG/SAG mill model (steady-state or dynamic) is used to determine the mill product size distribution. Different parameters can be used for different solids. | |
| Rod Mill (Lynch) | The Lynch rod mill model is used to determine the mill product size distribution. Different parameters can be used for different solids. | |
| Ball (Perfect Mixing) | The Perfect Mixing ball mill model (steady-state or dynamic) is used to determine the mill product size distribution. Different parameters can be used for different solids. | |
| Stirred (Perfect Mixing) | The Perfect Mixing stirred mill model (steady-state or dynamic) is used to determine the mill product size distribution. Different parameters can be used for different solids. | |
| Mill (Herbst-Fuerstenau) | The Herbst-Fuerstenau model is used to determine the mill product size distribution. Different parameters can be used for different solids. | |
| PowerModels | CheckBox | Show alternative mill power model calculations on the Power page. |
| MediaTrajectory | CheckBox | Show mill media rolling, sliding and free flight trajectory computations on the MediaTraj page. |
| MediaStrings | CheckBox | Show media size distributions at recharge equilibrium on the MediaStrings page. |
| Options | ||
| ShowQFeed | CheckBox | QFeed and associated tab pages (eg Sp) will become visible, showing the properties of the combined feed stream. |
| ShowQProd | CheckBox | QProd and associated tab pages (eg Sp) will become visible, showing the properties of the products. |
| SizeForPassingFracCalc | Input | Size fraction for % Passing calculation. The size fraction input here will be shown in the Stream Summary section. |
| FracForPassingSizeCalc | Input | Fraction passing for Size calculation. The fraction input here will be shown in the Stream Summary section. |
| Stream Summary | ||
| MassFlow / Qm | Display | The total mass flow in each stream. |
| SolidMassFlow / SQm | Display | The Solids mass flow in each stream. |
| LiquidMassFlow / LQm | Display | The Liquid mass flow in each stream. |
| VolFlow / Qv | Display | The total Volume flow in each stream. |
| Temperature / T | Display | The Temperature of each stream. |
| Density / Rho | Display | The Density of each stream. |
| SolidFrac / Sf | Display | The Solid Fraction in each stream. |
| LiquidFrac / Lf | Display | The Liquid Fraction in each stream. |
| Passing | Display | The mass fraction passing the user-specified size (in the field SizeForPassingFracCalc) in each stream. |
| Passes | Display | The user-specified (in the field FracForPassesSizeCalc) fraction of material in each stream will pass this size fraction. |
Mill page
The Mill page is used to specify the input parameters for the mill model.
Ore page
This page is used to define the comminution properties of SysCAD species with the size distribution quality in the project.
Results page
This page is used to display the model results.
| Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
|---|---|---|
| Results | ||
| Solver | ||
| Iterations | Display | Number of iterations to converge internal load solver. |
| IterationError | Display | Numerical approximation error of internal load solver. |
| Mill Properties | ||
| MillVolume | Display | Internal volume of the mill. |
| MillSpeed | Display | Rotational speed of the mill. |
| MillFeedRate / Feed.SLQv | Display | Volumetric feed rate of pulp into the mill. |
| Mill Contents | ||
| OreMass | Display | Mass of ore (solids with PSD) in the mill. |
| LiquidMass | Display | Mass of liquids in the mill. |
| BallMass | Display | Mass of ball media in the mill. |
| TotalChargeMass | Display | Total mass of ore, liquids and balls in the mill. |
| VolTotalLoad | Display | Volumetric fraction of mill volume of total charge (ore, liquids, balls and void space). |
| Mill Discharge | ||
| m1 | Display | Parameter of the Austin mill holdup relationship. |
| m2 | Display | Parameter of the Austin mill holdup relationship. |
| dMax | Display | Maximum discharge rate of load volume through the grate. |
| Charge Properties | ||
| S20 | Display | Size of the top (largest) 20% of the load. |
| ChargeDensity | Display | Density of the charge. |
| U | Display | Fraction of charge void space filled with slurry. |
| ThetaShoulder | Display | Angular position of the charge shoulder. |
| ThetaToe | Display | Angular position of the charge toe. |
| ChargeSurfaceRadius | Display | Radius of the inner charge surface. |
| Power | ||
| NoLoadPower | Display | No-load power draw of the mill. |
| NetPower | Display | Net power draw of the mill. |
| GrossPower | Display | Gross power draw of the mill. |
RiDi page
This page displays the breakage and discharge rates for each size interval computed by the model.
| Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
|---|---|---|
| Rates | ||
| Size | Display | Size of each interval in internal mesh series. |
| MeanSize | Display | Geometric mean size of each interval in internal mesh series. |
| R | Display | Value of breakage rate, , for each size interval, for each ore species. |
| D | Display | Value of discharge rate, , for each size interval. |
| Ecs | Display | Value of the specific comminution energy for each size interval. |
Load page
This page displays information about the balls, solids and liquids that currently comprise the mill load.
| Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
|---|---|---|
| Distribution | ||
| Name | Display | Shows the name of the SysCAD Size Distribution (PSD) quality associated with the feed stream. |
| IntervalCount | Display | Shows the number of size intervals in the SysCAD Size Distribution (PSD) quality associated with the feed stream. |
| SpWithPSDCount | Display | Shows the number of species in the feed stream assigned with the SysCAD Size Distribution (PSD) quality. |
| Load | ||
| SolidMass / SMt | Display | The mass of solids with the SysCAD size distribution property currently in the mill. |
| LiquidMass / LMt | Display | The mass of liquids currently in the mill. |
| BallMass / BMt | Display | The mass of ball media in the mill. |
| Size | Display | Size of each interval in the external mesh series. |
| MeanSize | Display | Geometric mean size of each interval in the external mesh series. |
| Load | Display | The mass of solids with the SysCAD size distribution property currently in the mill, by size and species.}} |
Power page
This optional page displays the inputs and results for alternative mill power models. The page is only visible if PowerModels is selected on the MD_Mill page.
| Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
|---|---|---|
| Power | ||
| HoggFuerstenau | CheckBox | Shows inputs and results for tumbling mill power calculations using the Hogg and Fuerstenau method. |
| MorrellC | CheckBox | Shows inputs and results for tumbling mill power calculations using the Morrell Continuum method. |
| MorrellE | CheckBox | Shows inputs and results for tumbling mill power calculations using the Morrell Empirical method. |
| MorrellD | CheckBox | Shows inputs and results for tumbling mill power calculations using the Morrell Discrete Shell method. |
| HildenPowell | CheckBox | Shows inputs and results for tumbling mill power calculations using the Hilden and Powell method. |
MediaStrings page
This page displays the inputs and results for grinding mill media string calculations. The page is only visible if MediaStrings is selected on the MD_Mill page.
MediaTraj page
This page displays the inputs and results for tumbling mill media trajectory calculations. The page is only visible if MediaTrajectory is selected on the MD_Mill page.
About page
This page is provides product and licensing information about the Met Dynamics Models SysCAD Add-On.
| Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
|---|---|---|
| About | ||
| HelpLink | Opens a link to the Installation and Licensing page using the system default web browser. Note: Internet access is required. | |
| Information | Copies Product and License information to the Windows clipboard. | |
| Product | ||
| Name | Display | Met Dynamics software product name |
| Version | Display | Met Dynamics software product version number. |
| BuildDate | Display | Build date and time of the Met Dynamics Models SysCAD Add-On. |
| License | ||
| File | This is used to locate a Met Dynamics software license file. | |
| Location | Display | Type of Met Dynamics software license or file name and path of license file. |
| SiteCode | Display | Unique machine identifier for license authorisation. |
| ReqdAuth | Display | Authorisation level required, MD-SysCAD Full or MD-SysCAD Runtime. |
| Status | Display | License status, LICENSE_OK indicates a valid license, other messages report licensing errors. |
| IssuedTo | Display | Only visible if Met Dynamics license file is used. Name of organisation/seat the license is authorised to. |
| ExpiryDate | Display | Only visible if Met Dynamics license file is used. License expiry date. |
| DaysLeft | Display | Only visible if Met Dynamics license file is used. Days left before the license expires. |
See also
External links
- Met Dynamics - Mill (help.syscad.net)
- Crushing and Grinding Example project (help.syscad.net)
- Crushing, Grinding, and Flotation Example project (help.syscad.net)
References
- ↑ Napier-Munn, T.J., Morrell, S., Morrison, R.D. and Kojovic, T., 1996. Mineral comminution circuits: their operation and optimisation. Julius Kruttschnitt Mineral Research Centre, Indooroopilly, QLD.
- ↑ Leung, K., Morrison, R.D. and Whiten, W.J., 1987. An Energy Based Ore Specific Model for Autogenous and Semi-autogenous Grinding, Copper 87, Vina del Mar, Vol. 2, pp 71 - 86
- ↑ Morrell, S. and Morrison, R.D., 1996. AG and SAG mill circuit selection and design by simulation. In International Conference on Autogenous and Semiautogenous Grinding Technology (Vol. 2, pp. 769-790).
- ↑ Morrell, S., Valery, W., Banini, G. and Latchireddi, S., 2001. Developments in AG/SAG mill modelling. Proceedings of Autogenous and Semiautogenous Grinding Technology, Vancouver, pp.71-84.





