Tumbling Mill (Media Strings): Difference between revisions
Scott Munro (talk | contribs) m (1 revision imported) |
imported>Scott.Munro m (→Model theory) |
||
| Line 12: | Line 12: | ||
== Model theory == | == Model theory == | ||
{{Restricted content}} | |||
<hide> | |||
=== Grinding media wear kinetics === | === Grinding media wear kinetics === | ||
| Line 98: | Line 101: | ||
which may provide a useful estimate for media string calculations. | which may provide a useful estimate for media string calculations. | ||
</hide> | |||
== Excel == | == Excel == | ||
Revision as of 11:20, 4 December 2024
Description
The article outlines a methodology for estimating the size distribution of media elements in grinding mills at recharge equilibrium, as proposed by Sepúlveda (2004):[1]
- The constant recharging, wearing and ejection of media elements in a mill results in a string of worn media elements of distributed sizes which descended from an original unworn (make-up) element.
- Charging a mill with a mixture of new media make-up sizes results in multiple strings coexisting, and combining into an effective overall string.
- When the addition rate of new media elements matches the ejection rate of scrap elements, the media strings are said to be in recharge equilibrium.
Sepúlveda mathematically derives an approach to estimating the mass weight by size distribution of both individual and overall combined strings at recharge equilibrium.
This information may be useful for understanding the effect of changing recharge media sizes or proportions on the overall distribution of media in a mill. It may also be useful for simulation purposes, where either full media size distributions or characteristic sizes are input parameters (e.g. AG/SAG, Perfect Mixing ball mill).
Model theory
Excel
The grinding mill media strings model may be invoked from the Excel formula bar with the following function call:
=mdMillMediaStrings(Size as Range, TopSize as Range, RechargePolicy as Range, scrapSize as Double)
Invoking the function with no arguments will print Help text associated with the model, including a link to this page.
The input arrays and model results are defined below in matrix notation, along with example images showing the selection of the same arrays in the Excel interface:
[math]\displaystyle{ \begin{array}{l} Size = \begin{bmatrix} d_{1}\text{ (mm)}\\ \vdots\\ d_n\text{ (mm)}\\ \end{bmatrix}, & & & \begin{array}{lll} TopSize= \begin{bmatrix} {(d^{\rm R}})_{1}\text{ (mm)} & \dots & {(d^{\rm R}})_m\text{ (mm)}\\ \end{bmatrix}, & & & RechargePolicy = \begin{bmatrix} r_1\text{ (w/w)} & \dots & r_{\rm m}\text{ (w/w)}\\ \end{bmatrix} & & & scrapSize = \left [ d^{\rm S} \right ] \end{array} \end{array} }[/math]
[math]\displaystyle{ mdMillMediaStrings = \begin{bmatrix} \begin{bmatrix} - \end{bmatrix} & \begin{bmatrix} v_1\text{ (v/v)} & \dots & v_m\text{ (v/v)}\\ \end{bmatrix} & \begin{bmatrix} - \end{bmatrix} & \begin{bmatrix} - \end{bmatrix} & \begin{bmatrix} - \end{bmatrix} \\ \begin{bmatrix} - \end{bmatrix} & \begin{bmatrix} a_1\text{ (m}^2\text{/m}^3\text{)} & \dots & a_m\text{ (m}^2\text{/m}^3\text{)}\\ \end{bmatrix} & \begin{bmatrix} a_{\rm All}\text{ (m}^2\text{/m}^3\text{)} \end{bmatrix} & \begin{bmatrix} - \end{bmatrix} & \begin{bmatrix} - \end{bmatrix}\\ \begin{bmatrix} - \end{bmatrix} & \begin{bmatrix} (P_{50})_1\text{ (mm)} & \dots & (P_{50})_m\text{ (mm)}\\ \end{bmatrix} & \begin{bmatrix} (P_{50})_{\rm All}\text{ (mm)} \end{bmatrix} & \begin{bmatrix} - \end{bmatrix} & \begin{bmatrix} - \end{bmatrix}\\ \begin{bmatrix} \bar d_{1}\text{ (mm)}\\ \vdots\\ \bar d_n\text{ (mm)}\\ \end{bmatrix} & \begin{bmatrix} F_3(d_1)_1\text{ (CFP)} & \dots & F_3(d_1)_m\text{ (CFP)}\\ \vdots & \ddots & \vdots\\ F_3(d_n)_1\text{ (CFP)} & \dots & F_3(d_n)_m\text{ (CFP)}\\ \end{bmatrix} & \begin{bmatrix} F_3(d_1)_{\rm All}\text{ (CFP)}\\ \vdots\\ F_3(d_n)_{\rm All}\text{ (CFP)}\\ \end{bmatrix} & \begin{bmatrix} f_3(d_1)_1\text{ (WFR)} & \dots & f_3(d_1)_m\text{ (WFR)}\\ \vdots & \ddots & \vdots\\ f_3(d_n)_1\text{ (WFR)} & \dots & f_3(d_n)_m\text{ (WFR)}\\ \end{bmatrix} & \begin{bmatrix} f_3(d_1)_{\rm All}\text{ (WFR)}\\ \vdots\\ f_3(d_n)_{\rm All}\text{ (WFR)}\\ \end{bmatrix} \end{bmatrix}\;\;\;\;\;\; }[/math]
where [math]\displaystyle{ P_{50} }[/math] is the median size, the 50% passing size (mm).
SysCAD
Media strings are an optional calculation for grinding mill units. If selected, the input and display parameters below are shown.
References
- ↑ Sepúlveda, J.E., 2004. Methodologies for the evaluation of grinding media consumption rates at full plant scale. Minerals engineering, 17(11-12), pp.1269-1279.
