Hydrocyclone (Narasimha-Mainza): Difference between revisions
Scott Munro (talk | contribs) |
imported>Scott.Munro mNo edit summary |
||
(16 intermediate revisions by 3 users not shown) | |||
Line 7: | Line 7: | ||
* A slurry viscosity term that includes the effects of very fine particles | * A slurry viscosity term that includes the effects of very fine particles | ||
* Terms for cyclone inclination, particle density, g-forces, flow regime (Reynolds Number) and turbulent diffusion | * Terms for cyclone inclination, particle density, g-forces, flow regime (Reynolds Number) and turbulent diffusion | ||
Narasimha et al. (2014b) subsequently presented a ''multi-component'' version of the same model, with revised equations for cut size and sharpness of separation per ore component:{{Narasimha et al. (2014b)}} | |||
== Model theory == | == Model theory == | ||
{{Restricted content}} | |||
<hide> | |||
[[File:HydrocycloneNarasimhaMainza1.png|thumb|375px|Figure 1. The dimensions of a hydrocyclone required by the Narasimha-Mainza model.]] | [[File:HydrocycloneNarasimhaMainza1.png|thumb|375px|Figure 1. The dimensions of a hydrocyclone required by the Narasimha-Mainza model.]] | ||
The | The Narasimha-Mainza model comprises an equation for the efficiency curve (partition to overflow) and several sub-equations that describe its parameters: | ||
* the corrected cut size | * the corrected cut size | ||
* the sharpness of separation | * the sharpness of separation | ||
Line 19: | Line 24: | ||
In addition, a relationship between throughput and operating pressure is presented. | In addition, a relationship between throughput and operating pressure is presented. | ||
</hide><div class="user-show"> | |||
=== Efficiency curve === | === Efficiency curve === | ||
</div><hide> | |||
The Narasimha-Mainza model applies the [[ | The Narasimha-Mainza model applies the [[Partition (Size, Whiten-Beta)|Whiten-Beta efficiency curve]] to partition particles to the overflow stream: | ||
{{Model theory (Text, Whiten-Beta Efficiency Curve)}} | {{Model theory (Text, Whiten-Beta Efficiency Curve)}} | ||
</hide><div class="user-show"> | |||
=== Corrected cut size === | === Corrected cut size === | ||
</div><hide> | |||
The corrected cut size, <math>d_{50c}</math> (m), is computed from: | The corrected cut size, <math>d_{\rm 50c}</math> (m), is computed from: | ||
:<math> | :<math> | ||
\dfrac {d_{50c}}{ | \dfrac {d_{\rm 50c}}{D_{\rm c}} = K_{\rm d0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{1.093} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-1.000} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.703} (\text{Re})^{-0.436} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{-0.936} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{0.187} {\left( \dfrac {1} {\tan \theta} \right)}^{-0.1988} {\left( \cos \left( \dfrac i 2 \right) \right)}^{-1.034} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}}{\rho_{\rm f}} \right)}^{-0.217} | ||
</math> | </math> | ||
where: | where: | ||
* <math>K_{d0}</math> is a calibration factor which should be fitted to operating data | * <math>K_{\rm d0}</math> is a calibration factor which should be fitted to operating data | ||
* <math> | * <math>D_{\rm c}</math> is diameter of the cyclone (m) | ||
* <math> | * <math>D_{\rm i}</math> is diameter of a circular inlet or the diameter of a circle with the same area as a non-circular inlet (m) | ||
* <math> | * <math>D_{\rm o}</math> is diameter of the vortex finder (overflow) (m) | ||
* <math> | * <math>D_{\rm u}</math> is diameter of the apex/spigot (underflow) (m) | ||
* <math> | * <math>L_{\rm c}</math> is length of the cylindrical section (m) | ||
* <math>\theta</math> is the cone full angle (deg.) | * <math>\theta</math> is the cone full angle (deg.) | ||
* <math>i</math> is the angle of inclination from the vertical (rad) | * <math>i</math> is the angle of inclination from the vertical (rad) | ||
* <math> | * <math>f_{\rm v}</math> is the volume fraction of solids in the feed (v/v) | ||
* <math>\ | * <math>\rho_{\rm s}</math> is the density of solids in the feed (t/m<sup>3</sup>) | ||
* <math>\ | * <math>\rho_{\rm f}</math> is the density of the fluid (liquids) in the feed (t/m<sup>3</sup>) | ||
* <math>g</math> is acceleration due to gravity (m/s<sup>2</sup>) | * <math>g</math> is acceleration due to gravity (m/s<sup>2</sup>) | ||
The Reynolds Number, <math>Re</math>, is: | The Reynolds Number, <math>\rm Re</math>, is: | ||
:<math>Re = \dfrac{1000 V_i | :<math>{\rm Re} = \dfrac{1000 V_i D_{\rm c} \rho_{\rm p}}{0.001\mu_{\rm r}}</math> | ||
The feed inlet velocity, <math>V_i</math> (m/s), is: | The feed inlet velocity, <math>V_i</math> (m/s), is: | ||
:<math>V_i = \dfrac{ | :<math>V_i = \dfrac{Q_{\rm f}}{\dfrac{\pi}{4}{D_{\rm i}}^2}</math> | ||
where <math> | where <math>Q_{\rm f}</math> is the volumetric feed flow rate (m<sup>3</sup>/h), and <math>\rho_{\rm p}</math> is the density of the feed pulp (t/m<sup>3</sup>). | ||
The relative slurry viscosity, <math>\ | The relative slurry viscosity, <math>\mu_{\rm r}</math>, is the ratio of slurry and water viscosities, <math>\mu_{\rm m}</math> and <math>\mu_{\rm w}</math>, which is approximated by: | ||
:<math>\ | :<math>\mu_{\rm r} = \dfrac{\mu_{\rm m}}{\mu_{\rm w}} = \left ( 1 - \dfrac{f_{\rm v}}{0.622} \right)^{-1.55} ({F_{-38\mu}})^{0.39}</math> | ||
where <math>F_{-38\mu}</math> is the cumulative fraction passing 38 μm in the feed (frac). | where <math>F_{-38\mu}</math> is the cumulative fraction passing 38 μm in the feed (frac). | ||
</hide><div class="user-show"> | |||
=== Liquids recovery === | === Liquids recovery === | ||
</div><hide> | |||
The fraction of feed liquid recovered to the underflow stream, <math> | The fraction of feed liquid recovered to the underflow stream, <math>R_{\rm f}</math>, is related to <math>C</math> (i.e. <math>C = 1 - R_{\rm f}</math>), and is computed as: | ||
:<math> | :<math> | ||
R_{\rm f} = K_{\rm w0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{-1.06787} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{2.2062} {\left( \dfrac {V^2_t} {R_{\rm max}g} \right)}^{-0.20472} {\left( {\tan \left({\dfrac \theta 2}\right)} \right)}^{-0.829} {\mu_{\rm r}}^{-0.7118} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{2.424} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.8843} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}} {\rho_{\rm f}} \right)}^{0.523} {\left( \cos \left(\dfrac i 2 \right) \right)}^{1.793} | |||
</math> | </math> | ||
where <math>K_{w0}</math> is a calibration factor which should be fitted to operating data. | where <math>K_{\rm w0}</math> is a calibration factor which should be fitted to operating data. | ||
<math>R_{max}</math> is the radius of the cyclone (m), i.e.: | <math>R_{\rm max}</math> is the radius of the cyclone (m), i.e.: | ||
:<math>R_{max} = 0.5 | :<math>R_{\rm max} = 0.5 D_{\rm c}</math> | ||
and the tangential velocity, <math> | and the tangential velocity, <math>V_{\rm t}</math> (m/s), is: | ||
:<math> | :<math>V_{\rm t} = 4.5 V_i \left ( \dfrac{D_{\rm i}}{D_{\rm c}} \right )^{1.13}</math> | ||
</hide><div class="user-show"> | |||
=== Sharpness of separation === | === Sharpness of separation === | ||
</div><hide> | |||
The sharpness of separation parameter, <math>\alpha</math>, is: | The sharpness of separation parameter, <math>\alpha</math>, is: | ||
:<math> | :<math> | ||
\alpha = K_\alpha {{ {{\left( \dfrac { | \alpha = K_\alpha {{ {{\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{0.27\phantom{0}} {\left( \dfrac {V_{\rm t}^2} {gR_{\rm max}} \right)}^{0.016} {\left( \cos \left( \dfrac {i}{2} \right) \right)}^{0.868} {\left ( \dfrac {{\left( 1 - fv \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{0.72\phantom{0}}} } { {{\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-0.567} {\left( \dfrac {\left( \rho_{\rm s} - \rho_{\rm p} \right)} {\rho_{\rm s}} \right)}^{-1.837} {\mu_{\rm r}}^{-0.127} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{0.182\phantom{-}} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-0.2}} }} | ||
</math> | </math> | ||
where <math>K_{\alpha}</math> is a calibration factor which should be fitted to operating data. | where <math>K_{\alpha}</math> is a calibration factor which should be fitted to operating data. | ||
</hide><div class="user-show"> | |||
=== Cyclone capacity === | === Cyclone capacity === | ||
</div><hide> | |||
The volumetric capacity of a cyclone at a given operating pressure, <math>Q</math> (m<sup>3</sup>/h), is estimated from the pressure-throughput relationship: | The '''volumetric capacity''' of a cyclone at a given operating pressure, <math>Q</math> (m<sup>3</sup>/h), is estimated from the pressure-throughput relationship: | ||
:<math> | :<math> | ||
Q = K_{Q0} {\left( \dfrac { | Q = K_{\rm Q0} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{0.45} {D_{\rm c}}^{2} \sqrt \dfrac P {\rho_{\rm p}} {\left( \dfrac {D_{\rm o}} {d_c} \right)}^{1.099} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{0.037} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{-0.405} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{0.30\phantom{0}} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.048} {\left( \cos \left( \dfrac i 2 \right) \right)}^{-0.092} | ||
</math> | </math> | ||
where <math>K_{Q0}</math> is a calibration factor which should be fitted to operating data, and <math>P</math> is the pressure drop across the operating cyclone (kPa). | where <math>K_{\rm Q0}</math> is a calibration factor which should be fitted to operating data, and <math>P</math> is the pressure drop across the operating cyclone (kPa). | ||
This expression may be used to estimate the number of cyclones required to accept a given total cluster feed flow rate at a fixed pressure, e.g. a process set point. | This expression may be used to estimate the number of cyclones required to accept a given total cluster feed flow rate at a fixed pressure, e.g. a process set point. | ||
Alternatively, the pressure drop arising from a given feed flow rate may be calculated by rearranging the above equation: | Alternatively, the '''pressure drop''' arising from a given feed flow rate may be calculated by rearranging the above equation: | ||
:<math> | :<math> | ||
P = \ | P = \rho_{\rm p} \left [ Q {{K_{\rm Q0}}^{-1} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{-0.45} {D_{\rm c}}^{-2} {\left( \dfrac {D_{\rm o}} {d_c} \right)}^{-1.099} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-0.037} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{0.405} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-0.30\phantom{0}} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{0.048} {\left( \cos \left( \dfrac i 2 \right) \right)}^{0.092}} \right ]^2 | ||
</math> | </math> | ||
</hide><div class="user-show"> | |||
=== Multi-component modelling === | === Multi-component modelling === | ||
</div><hide> | |||
</hide><div class="user-show"> | |||
==== Narasimha, Mainza and Holtham (2014) ==== | |||
</div><hide> | |||
The Narasimha-Mainza model formulation only considers the classification of solid particles with a single average feed density, <math>\ | The Narasimha-Mainza model formulation only considers the classification of solid particles with a single average feed density, <math>\rho_{\rm s}</math>. | ||
Narasimha et al. (2014b) explored the classification of multi-component feeds, deriving modified equations for cut size and sharpness of separation per ore component:{{Narasimha et al. (2014b)}} | Narasimha et al. (2014b) explored the classification of ''multi-component'' feeds, deriving modified equations for cut size and sharpness of separation per ore component:{{Narasimha et al. (2014b)}} | ||
:<math> | :<math> | ||
\dfrac {(d_{50c})_j}{ | \dfrac {(d_{\rm 50c})_j}{D_{\rm c}} = K_{\rm d0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{1.093} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-1.000} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.703} (\text{Re})^{-0.436} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{-0.936} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{0.187} {\left( \dfrac {1} {\tan \theta} \right)}^{-0.1988} {\left( \cos \left( \dfrac i 2 \right) \right)}^{-1.034} {\left( \dfrac {\rho_{{\rm s}j} - \rho_{\rm f}}{\rho_{\rm f}} \right)}^{-1.37} | ||
</math> | </math> | ||
Line 122: | Line 143: | ||
:<math> | :<math> | ||
\alpha_j = K_\alpha {{ {{\left( \dfrac { | \alpha_j = K_\alpha {{ {{\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{0.27\phantom{0}} {\left( \dfrac {V_{\rm t}^2} {gR_{\rm max}} \right)}^{0.016} {\left( \cos \left( \dfrac {i}{2} \right) \right)}^{0.868} {\left ( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{0.72\phantom{0}}} } { {{\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-0.567} {\left( \rho_{{\rm s}j} - \rho_{\rm p} \right)}^{-0.983} {\mu_{\rm r}}^{-0.127} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{0.182\phantom{-}} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-0.2}} }} | ||
</math> | </math> | ||
where <math>\rho_{ | where <math>\rho_{{\rm s}j}</math> is the density of solid ore component <math>j</math> (t/m<sup>3</sup>). | ||
A | A multi-component version of the Narasimha-Mainza model is available which replaces the average density cut size and sharpness of separation equations with their per ore equivalents above. The multi-component version is named as '''Narasimha-Mainza (Multi)''' to distinguish it from the primary Narasimha-Mainza (2014) formulation. | ||
</hide><div class="user-show"> | |||
==== Silveira, Delboni and Bergerman (2024) ==== | |||
</div><hide> | |||
More recently, Silveira et al. (2024) simulated multicomponent classification with the Narasimha-Mainza model by assigning separate cut size and sharpness coefficients to the valuable mineral phase and overall ore partitions.{{Silveira et al. (2024)}} | |||
This concept is extended here to allow the specification of cut size and sharpness coefficients for each ore/mineral/class type in the feed, i.e. <math>(K_{\rm d0})_j</math> and <math>(K_{\alpha 0})_j</math> replacing <math>K_{\rm d0}</math> and <math>K_{\alpha 0}</math>. | |||
</hide><div class="user-show"> | |||
=== Partition metrics === | === Partition metrics === | ||
</div><hide> | |||
{{Model theory (Text, Hydrocyclone, Partition Metrics)}} | {{Model theory (Text, Hydrocyclone, Partition Metrics)}} | ||
</hide><div class="user-show"> | |||
=== Roping === | === Roping === | ||
</div><hide> | |||
{{Model theory (Text, Hydrocyclone, Roping)}} | {{Model theory (Text, Hydrocyclone, Roping)}} | ||
</hide> | |||
== Additional notes == | == Additional notes == | ||
Note that the equations presented by | Note that the equations presented by Narasimha et al. (2014) differ from those presented in Narasimha's original dissertation.{{Narasimha (2009)}} | ||
The user should be aware of which model formulation is being applied when adopting calibration parameters from external sources. Recalibration of model parameters via the Excel interface below is recommended in such cases. | The user should be aware of which model formulation is being applied when adopting calibration parameters from external sources. Recalibration of model parameters via the Excel interface below is recommended in such cases. | ||
Line 147: | Line 181: | ||
The Narasimha-Mainza hydrocyclone model may be invoked from the Excel formula bar with the following function call: | The Narasimha-Mainza hydrocyclone model may be invoked from the Excel formula bar with the following function call: | ||
<syntaxhighlight lang="vb">=mdUnit_Hydrocyclone_NarasimhaMainza(Parameters as Range, Size as Range, Feed as Range, OreSG Range)</syntaxhighlight> | <syntaxhighlight lang="vb">=mdUnit_Hydrocyclone_NarasimhaMainza(Parameters as Range, Size as Range, Feed as Range, OreSG Range, Optional Kd0 as Range, Optional Kalpha0 as Range)</syntaxhighlight> | ||
{{Excel (Text, Help, No Arguments)}} | {{Excel (Text, Help, No Arguments)}} | ||
Line 155: | Line 189: | ||
{{Excel (Text, Inputs)}} | {{Excel (Text, Inputs)}} | ||
:<math>Parameters= | :<math>\mathit{Parameters}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
\text{Method}\\ | \text{Method}\\ | ||
\text{Pressure control}\\ | \text{Pressure control}\\ | ||
\text{Number of cyclones}\\ | \text{Number of cyclones}\\ | ||
D_{\rm c}\text{ (m)}\\ | |||
D_{\rm i}\text{ (m)}\\ | |||
D_{\rm o}\text{ (m)}\\ | |||
D_{\rm u}\text{ (m)}\\ | |||
L_{\rm c}\text{ (m)}\\ | |||
\theta\text{ (deg.)}\\ | \theta\text{ (deg.)}\\ | ||
i\text{ (deg.)}\\ | i\text{ (deg.)}\\ | ||
P\text{ (kPa)}\\ | P\text{ (kPa)}\\ | ||
K_{d0}\\ | K_{\rm d0}\\ | ||
K_{Q0}\\ | K_{\rm Q0}\\ | ||
K_{w0}\\ | K_{\rm w0}\\ | ||
K_{\alpha}\\ | K_{\alpha}\\ | ||
\beta\\ | \beta\\ | ||
(Q_{M,F})_{ | (Q_{\rm M,F})_{\rm L}\text{ (t/h)}\\ | ||
\ | \rho_{\rm f}\text{ (t/m}^{\text{3}}\text{)}\\ | ||
\end{bmatrix},\ | \end{bmatrix},\quad | ||
\begin{array}{l} | |||
Size = \begin{bmatrix} | Size = \begin{bmatrix} | ||
Line 181: | Line 217: | ||
\vdots\\ | \vdots\\ | ||
d_n\text{ (mm)}\\ | d_n\text{ (mm)}\\ | ||
\end{bmatrix},\ | \end{bmatrix},\quad | ||
Feed= \begin{bmatrix} | \mathit{Feed}= \begin{bmatrix} | ||
(Q_{M,F})_{11}\text{ (t/h)} & \dots & (Q_{M,F})_{1m}\text{ (t/h)}\\ | (Q_{\rm M,F})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,F})_{1m}\text{ (t/h)}\\ | ||
\vdots & \ddots & \vdots\\ | \vdots & \ddots & \vdots\\ | ||
(Q_{M,F})_{n1}\text{ (t/h)} & \dots & (Q_{M,F})_{nm}\text{ (t/h)}\\ | (Q_{\rm M,F})_{n1}\text{ (t/h)} & \dots & (Q_{\rm M,F})_{nm}\text{ (t/h)}\\ | ||
\end{bmatrix},\ | \end{bmatrix},\quad | ||
OreSG= \begin{bmatrix} | \mathit{OreSG}= \begin{bmatrix} | ||
(\ | (\rho_{\rm s})_1\text{ (t/m}^\text{3}\text{)} & \dots & (\rho_{\rm s})_m\text{ (t/m}^\text{3}\text{)}\\ | ||
\end{bmatrix} | \end{bmatrix},\quad | ||
\mathit{Kd0}= \begin{bmatrix} | |||
(K_{\rm d0})_1 & \dots & (K_{\rm d0})_m\\ | |||
\end{bmatrix}^*,\quad | |||
\mathit{Kalpha 0}= \begin{bmatrix} | |||
(K_{\alpha 0})_1 & \dots & (K_{\alpha 0})_m\\ | |||
\end{bmatrix}^* | |||
\end{array} | |||
</math> | </math> | ||
Line 201: | Line 246: | ||
* <math>\text{Number of cyclones}</math> is the number of cyclones ''operating'' in a cluster. The number of cyclones is ignored if <math>\text{Pressure control}</math> is ''TRUE'' (the value is returned in the results instead) | * <math>\text{Number of cyclones}</math> is the number of cyclones ''operating'' in a cluster. The number of cyclones is ignored if <math>\text{Pressure control}</math> is ''TRUE'' (the value is returned in the results instead) | ||
* <math>P</math>, the operating pressure, is ignored if <math>\text{Pressure control}</math> is ''FALSE'' (the value is returned in the results instead) | * <math>P</math>, the operating pressure, is ignored if <math>\text{Pressure control}</math> is ''FALSE'' (the value is returned in the results instead) | ||
* <math>\ | * <math>\rho_{\rm f}</math> is the density of liquids (fluids) in the feed (t/m<sup>3</sup>) | ||
* <math>d_i</math> is the size of the square mesh interval that feed mass is retained on (mm) | |||
* <math>m</math> is the number of ore types | * <math>m</math> is the number of ore types | ||
* <math>Q_{M,F}</math> is feed solids mass flow rate by size and ore type (t/h) | * <math>Q_{\rm M,F}</math> is feed solids mass flow rate by size and ore type (t/h) | ||
* <math>(Q_{M,F})_{ | * <math>(Q_{\rm M,F})_{\rm L}</math> is the mass flow feed rate of liquids into the cyclone (t/h) | ||
* <math>^*</math> indicates optional arrays to specify cut size and sharpness parameters by ore/mineral/class type. If either array is omitted (default), the <math>K_{{\rm d0}}</math> and <math>K_{\alpha 0}</math>values supplied in the <math>\mathit{Parameters}</math> array are used instead. | |||
=== Results === | === Results === | ||
Line 211: | Line 258: | ||
:<math> | :<math> | ||
mdUnit\_Hydrocyclone\_NarasimhaMainza = | \mathit{mdUnit\_Hydrocyclone\_NarasimhaMainza} = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
\begin{ | \begin{bmatrix} | ||
\text{Number of cyclones}\\ | \text{Number of cyclones}\\ | ||
\text{Qv per cyclone (m}^{\text{3}}\text{/h)}\\ | \text{Qv per cyclone (m}^{\text{3}}\text{/h)}\\ | ||
\text{Qv per cluster (m}^{\text{3}}\text{/h)}\\ | \text{Qv per cluster (m}^{\text{3}}\text{/h)}\\ | ||
C_{\rm V} \text{ (}\%\text{ v/v)}\\ | |||
P\text{ (kPa)}\\ | P\text{ (kPa)}\\ | ||
R_{\rm v}\text{ (frac)}\\ | |||
R_{\rm f}\text{ (frac)}\\ | |||
\text{Water split to OF (frac)}\\ | \text{Water split to OF (frac)}\\ | ||
d_{50c}\text{ (mm)}\\ | d_{\rm 50c}\text{ (mm)}\\ | ||
(Q_{\rm M,OF})_{\rm L}\text{ (t/h)}\\ | |||
(Q_{\rm M,UF})_{\rm L}\text{ (t/h)}\\ | |||
d_{50}\text{ (mm)}\\ | d_{50}\text{ (mm)}\\ | ||
E_{\rm p}\text{ (mm)}\\ | |||
I\\ | I\\ | ||
\text{SPOC }C_{VU}\text{ (v/v)}\\ | \text{SPOC }C_{\rm VU}\text{ (v/v)}\\ | ||
\text{Plitt }M_{SU}\text{ (m}^{3}\text{/h)}\\ | \text{Plitt }M_{\rm SU}\text{ (m}^{3}\text{/h)}\\ | ||
\text{Plitt }\ | \text{Plitt }\Phi_{\rm L}\text{ (v/v)}\\ | ||
\text{Bustamante condition}\\ | \text{Bustamante condition}\\ | ||
\text{Concha condition}\\ | \text{Concha condition}\\ | ||
\end{ | \end{bmatrix} | ||
Line 249: | Line 296: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
(Q_{M,UF})_{11}\text{ (t/h)} & \dots & (Q_{M,UF})_{1m}\text{ (t/h)}\\ | (Q_{\rm M,UF})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,UF})_{1m}\text{ (t/h)}\\ | ||
\vdots & \ddots & \vdots\\ | \vdots & \ddots & \vdots\\ | ||
(Q_{M,UF})_{n1}\text{ (t/h)} & \dots & (Q_{M,UF})_{nm}\text{ (t/h)}\\ | (Q_{\rm M,UF})_{n1}\text{ (t/h)} & \dots & (Q_{\rm M,UF})_{nm}\text{ (t/h)}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
Line 257: | Line 304: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
(Q_{M,OF})_{11}\text{ (t/h)} & \dots & (Q_{M,OF})_{1m}\text{ (t/h)}\\ | (Q_{\rm M,OF})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,OF})_{1m}\text{ (t/h)}\\ | ||
\vdots & \ddots & \vdots\\ | \vdots & \ddots & \vdots\\ | ||
(Q_{M,OF})_{n1}\text{ (t/h)} & \dots & (Q_{M,OF})_{nm}\text{ (t/h)}\\ | (Q_{\rm M,OF})_{n1}\text{ (t/h)} & \dots & (Q_{\rm M,OF})_{nm}\text{ (t/h)}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
Line 265: | Line 312: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
( | (E_{\rm oa})_{11}\text{ (frac)} & \dots & (E_{\rm oa})_{1m}\text{ (frac)}\\ | ||
\vdots & \ddots & \vdots\\ | |||
(E_{\rm oa})_{n1}\text{ (frac)} & \dots & (E_{\rm oa})_{nm}\text{ (frac)}\\ | |||
\end{bmatrix} | |||
& | |||
\begin{bmatrix} | |||
(P_{\rm OF})_{1,{\rm All}}\\ | |||
\vdots\\ | \vdots\\ | ||
(P_{OF}) | (P_{\rm OF})_{n,{\rm All}}\\ | ||
\end{bmatrix} | \end{bmatrix} | ||
Line 273: | Line 328: | ||
\begin{bmatrix} | \begin{bmatrix} | ||
(d_{50c})_1 & \dots & (d_{50c})_m\\ | \alpha_1 & \dots & \alpha_m\\ | ||
(d_{\rm 50c})_1 & \dots & (d_{\rm 50c})_m\\ | |||
\beta^*_1 & \dots & \beta^*_m\\ | \beta^*_1 & \dots & \beta^*_m\\ | ||
\end{bmatrix}\\ | \end{bmatrix}\\ | ||
Line 305: | Line 361: | ||
* <math>\text{P}</math> is the pressure drop across the cyclone cluster with <math>\text{Number of cyclones}</math> operating at feed rate <math>\text{Qv per cluster}</math>, if <math>\text{Pressure control}</math> = ''FALSE'' (kPa) | * <math>\text{P}</math> is the pressure drop across the cyclone cluster with <math>\text{Number of cyclones}</math> operating at feed rate <math>\text{Qv per cluster}</math>, if <math>\text{Pressure control}</math> = ''FALSE'' (kPa) | ||
* <math>\text{Water split to OF}</math> is actual split of liquids to the overflow (frac) | * <math>\text{Water split to OF}</math> is actual split of liquids to the overflow (frac) | ||
* <math>(Q_{M,OF})_{ | * <math>(Q_{\rm M,OF})_{\rm L}</math> is the mass flow rate of liquids to the overflow stream (t/h) | ||
* <math>(Q_{M,UF})_{ | * <math>(Q_{\rm M,UF})_{\rm L}</math> is the mass flow rate of liquids to the underflow stream (t/h) | ||
* <math>\text{SPOC }C_{\rm VU}</math> is the SPOC roping limit of volume fraction solids in the underflow stream (v/v) | |||
* <math>\text{Plitt }M_{\rm SU}</math> is the Plitt roping limit of volumetric flow rate of solids in the underflow stream (m<sup>3</sup>/h) | |||
* <math>\text{Plitt }\Phi_{\rm L}</math> is the Plitt roping limit of volume fraction solids in the underflow stream (v/v) | |||
* <math>\text{SPOC }C_{VU}</math> is the SPOC roping limit of volume fraction solids in the underflow stream (v/v) | |||
* <math>\text{Plitt }M_{SU}</math> is the Plitt roping limit of volumetric flow rate of solids in the underflow stream (m<sup>3</sup>/h) | |||
* <math>\text{Plitt }\ | |||
* <math>\text{Bustamante condition}</math> is the underflow discharge type based on the Bustamante geometry limits (''spray'' or ''roping'' discharge) | * <math>\text{Bustamante condition}</math> is the underflow discharge type based on the Bustamante geometry limits (''spray'' or ''roping'' discharge) | ||
* <math>\text{Concha condition}</math> is the underflow discharge type based on the Concha geometry limits (''spray'' or ''roping'' discharge) | * <math>\text{Concha condition}</math> is the underflow discharge type based on the Concha geometry limits (''spray'' or ''roping'' discharge) | ||
* <math>Q_{\rm M,UF}</math> is mass flow rate of solids to the underflow stream (t/h) | |||
* <math>Q_{\rm M,OF}</math> is mass flow rate of solids to the overflow stream (t/h) | |||
* <math>(P_{\rm OF})_{i,{\rm All}}</math> is the actual partition of all particles of size <math>i</math> to the overflow stream, computed as <math>\frac{\sum_{j=1}^m(Q_{\rm M,OF})_{ij}}{\sum_{j=1}^m(Q_{\rm M,F})_{ij}}</math> (frac) | |||
=== Example === | === Example === | ||
Line 329: | Line 385: | ||
The sections and variable names used in the SysCAD interface are described in detail in the following tables. | The sections and variable names used in the SysCAD interface are described in detail in the following tables. | ||
{{SysCAD (Page, Hydrocyclone, | {{SysCAD (Page, Hydrocyclone, DLL*Hydrocyclone)}} | ||
==== Cyclone page ==== | ==== Cyclone page ==== | ||
Line 346: | Line 402: | ||
|CheckBox | |CheckBox | ||
|If enabled, the number of cyclones is adjusted to maintain operating pressure at the feed volumetric flow rate. | |If enabled, the number of cyclones is adjusted to maintain operating pressure at the feed volumetric flow rate. | ||
|- | |||
|OreSpecific | |||
|CheckBox | |||
|Only appears if the Narasimha-Mazina (2014) model method is selected. If enabled, allows Kd0 and Kalpha parameters to be specified per species. | |||
|- | |- | ||
! colspan="3" style="text-align:left;" |''Dimensions'' | ! colspan="3" style="text-align:left;" |''Dimensions'' | ||
Line 401: | Line 461: | ||
|Kalpha0 | |Kalpha0 | ||
|Input | |Input | ||
|Calibration factor for the sharpness of separation | |Calibration factor for the sharpness of separation equation. | ||
|- | |- | ||
|Beta | |Beta | ||
Line 407: | Line 467: | ||
|'Fish hook' parameter of the Whiten-Beta efficiency curve equation. | |'Fish hook' parameter of the Whiten-Beta efficiency curve equation. | ||
{{SysCAD (Text, Hydrocyclone, Liquids)}} | {{SysCAD (Text, Hydrocyclone, Liquids)|method=0}} | ||
|- | |- | ||
! colspan="3" style="text-align:left;" |''Results'' | ! colspan="3" style="text-align:left;" |''Results'' | ||
|- | |- | ||
|ClusterQv | |ClusterQv / Cluster.Qv | ||
|style="background: #eaecf0" | Display | |style="background: #eaecf0" | Display | ||
|Volumetric flow rate of feed to the cyclone cluster (i.e. total flow). | |Volumetric flow rate of feed to the cyclone cluster (i.e. total flow). | ||
|- | |- | ||
|CycloneQv | |CycloneQv / Cyclone.Qv | ||
|style="background: #eaecf0" | Display | |style="background: #eaecf0" | Display | ||
|Volumetric flow rate of feed to each cyclone in the cluster (i.e. per cyclone flow). | |Volumetric flow rate of feed to each cyclone in the cluster (i.e. per cyclone flow). | ||
|- | |- | ||
|OperatingPressure | |OperatingPressure / P | ||
|style="background: #eaecf0" | Display | |style="background: #eaecf0" | Display | ||
|Pressure drop across the cyclone. | |Pressure drop across the cyclone. | ||
|- | |- | ||
|fv | |VolFracSolids / fv | ||
|style="background: #eaecf0" | Display | |style="background: #eaecf0" | Display | ||
|Volume fraction of solids in feed stream. | |Volume fraction of solids in feed stream. | ||
|- | |- | ||
|mur | |RelSlurryVisc / mur | ||
|style="background: #eaecf0" | Display | |style="background: #eaecf0" | Display | ||
|Relative slurry viscosity. | |Relative slurry viscosity. | ||
Line 452: | Line 512: | ||
|} | |} | ||
{{SysCAD (Page, Hydrocyclone, Partition)}} | {{SysCAD (Page, Hydrocyclone, Partition)|ActionU=Partition|ActionL=partition|DestinationU=Overflow|DestinationL=overflow|UnitL=cyclone}} | ||
{{SysCAD (Page, Hydrocyclone, Roping)}} | {{SysCAD (Page, Hydrocyclone, Roping)}} | ||
{{SysCAD (Page, About)}} | {{SysCAD (Page, About)}} | ||
==== Additional notes ==== | |||
{{SysCAD (Text, No PSD Splits)|gasstream=overflow}} | |||
== See also == | == See also == | ||
Line 462: | Line 526: | ||
* [[Hydrocyclone (Plitt)]] | * [[Hydrocyclone (Plitt)]] | ||
* [[Hydrocyclone (Nageswararao)]] | * [[Hydrocyclone (Nageswararao)]] | ||
* [https://help.syscad.net/Met_Dynamics_-_Hydrocyclone Met Dynamics - Hydrocyclone (help.syscad.net)] | |||
== External links == | |||
* [https://help.syscad.net/Example_-_09_Met_Dynamics_Projects#Crushing_and_Grinding_Example Crushing and Grinding Example project (help.syscad.net)] | |||
* [https://help.syscad.net/Example_-_09_Met_Dynamics_Projects#Crushing,_Grinding_and_Flotation_Example Crushing, Grinding and Flotation Example project (help.syscad.net)] | |||
* [https://help.syscad.net/Example_-_09_Met_Dynamics_Projects#Gravity,_Dense_Medium_and_Magnetic_Separation_Example Gravity, Dense Medium, and Magnetic Separation Example project (help.syscad.net)] | |||
* [https://help.syscad.net/Met_Dynamic_-_Dynamic_Example_Projects#Dynamic_Grinding_Example Dynamic Grinding Example project (help.syscad.net)] | |||
== References == | == References == | ||
Line 475: | Line 547: | ||
:<math> | :<math> | ||
\dfrac {(d_{50c})_i}{ | \dfrac {(d_{\rm 50c})_i}{D_{\rm c}} = K_{\rm d0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{d_1} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{d_2} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{d_3} (\text{Re})^{d_4} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{d_5} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{d_6} {\big( \tan (d_7 \theta) \big)}^{d_8} {\left( \cos \left( \dfrac i 2 \right) \right)}^{d_9} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}}{\rho_{\rm f}} \right)}^{d_{10}} {\left( \dfrac {\rho_{si} - \rho_{\rm f}}{\rho_{\rm f}} \right)}^{d_{11}} | ||
</math> | </math> | ||
:<math> | :<math> | ||
R_{\rm f} = K_{\rm w0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{w_1} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{w_2} {\left( \dfrac {V^2_t} {R_{\rm max}g} \right)}^{w_3} {\left( {\tan \left({\dfrac \theta 2}\right)} \right)}^{w_4} {\mu_{\rm r}}^{w_5} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{w_6} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{w_7} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}} {\rho_{\rm f}} \right)}^{w_8} {\left( \cos \left(\dfrac i 2 \right) \right)}^{w_9} | |||
</math> | </math> | ||
:<math> | :<math> | ||
\alpha_i = K_\alpha {{ {{\left( \dfrac { | \alpha_i = K_\alpha {{ {{\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{\alpha_1} {\left( \dfrac {V_{\rm t}^2} {gR_{\rm max}} \right)}^{\alpha_2} {\left( \cos \left( \dfrac {i}{2} \right) \right)}^{\alpha_3} {\left ( \dfrac {{\left( 1 - fv \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{\alpha_4}} } { {{\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{\alpha_5} {\left( \dfrac {\left( \rho_{\rm s} - \rho_{\rm p} \right)} {\rho_{\rm s}} \right)}^{\alpha_6} {\mu_{\rm r}}^{\alpha_7} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{\alpha_8} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{\alpha_9}} }} \left( \rho_{\rm s} - \rho_{\rm p} \right)^{\alpha_{10}} | ||
</math> | </math> | ||
:<math> | :<math> | ||
Q = K_{Q0} {\left( \dfrac { | Q = K_{\rm Q0} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{Q_1} {D_{\rm c}}^{2} \sqrt \dfrac P {\rho_{\rm p}} {\left( \dfrac {D_{\rm o}} {d_c} \right)}^{Q_2} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{Q_3} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{Q_4} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{Q_5} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{Q_6} {\left( \cos \left( \dfrac i 2 \right) \right)}^{Q_7} | ||
</math> | </math> | ||
:<math> | :<math> | ||
P = \ | P = \rho_{\rm p} \left [ Q {{K_{\rm Q0}}^{-1} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{-Q_1} {D_{\rm c}}^{-2} {\left( \dfrac {D_{\rm o}} {d_c} \right)}^{-Q_2} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-Q_3} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{-Q_4} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-Q_5} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-Q_6} {\left( \cos \left( \dfrac i 2 \right) \right)}^{-Q_7}} \right ]^2 | ||
</math> | </math> | ||
Line 503: | Line 575: | ||
:<math> | :<math> | ||
\dfrac {d_{50c}}{ | \dfrac {d_{\rm 50c}}{D_{\rm c}} = | ||
\begin{cases} | \begin{cases} | ||
K_{d0} {\left( \dfrac { | K_{\rm d0} {\left( \dfrac {D_{\rm o}}{D_{\rm c}} \right)}^{1.207} {\left( \dfrac {D_{\rm u}}{D_{\rm c}} \right)}^{-0.921} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.657} (\text{Re})^{-0.500} {\left( \dfrac {D_{\rm i}}{D_{\rm c}} \right)}^{-0.750} {\left( \dfrac {L_{\rm c}}{D_{\rm c}} \right)}^{0.272} {\left( \dfrac {\tan \theta}{2} \right)}^{0.139}\phantom{00} {\left( \cos \left( \dfrac {i}{2} \right) \right)}^{-1.050} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}}{\rho_{\rm f}} \right)}^{-0.244} & \text{Narasimha (2009)}\\ | ||
\\ | \\ | ||
K_{d0} {\left( \dfrac { | K_{\rm d0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{1.093} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-1.000} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.703} (\text{Re})^{-0.436} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{-0.936} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{0.187} {\left( \dfrac {1} {\tan \theta} \right)}^{-0.1988} {\left( \cos \left( \dfrac i 2 \right) \right)}^{-1.034} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}}{\rho_{\rm f}} \right)}^{-0.217} & \text{Narasimha et al. (2014)}\\ | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
:<math> | :<math> | ||
R_{\rm f} = | |||
\begin{cases} | \begin{cases} | ||
K_{w0} {\left( \dfrac { | K_{\rm w0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{-0.835\phantom{00}} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{2.190\phantom{0}} {\left( \dfrac {V^2_t} {R_{\rm max}g} \right)}^{-0.259\phantom{00}} {\left( {\tan \left( \dfrac{\theta}{2}\right)} \right)}^{-0.649} {\mu_{\rm r}}^{-0.792\phantom{0}} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{1.937} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.930} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}} {\rho_{\rm f}} \right)}^{0.462} {\left( \cos \left(\dfrac i 2 \right) \right)}^{1.765} & \text{Narasimha (2009)}\\ | ||
\\ | \\ | ||
K_{w0} {\left( \dfrac { | K_{\rm w0} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{-1.06787} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{2.2062} {\left( \dfrac {V^2_t} {R_{\rm max}g} \right)}^{-0.20472} {\left( {\tan \left({\dfrac \theta 2}\right)} \right)}^{-0.829} {\mu_{\rm r}}^{-0.7118} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{2.424} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.8843} {\left( \dfrac {\rho_{\rm s} - \rho_{\rm f}} {\rho_{\rm f}} \right)}^{0.523} {\left( \cos \left(\dfrac i 2 \right) \right)}^{1.793} & \text{Narasimha et al. (2014)}\\ | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Line 523: | Line 595: | ||
\alpha = | \alpha = | ||
\begin{cases} | \begin{cases} | ||
K_\alpha {{\left( \dfrac { | K_\alpha {{\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{0.191} {\left( \dfrac {V_{\rm t}^2} {gR_{\rm max}} \right)}^{0.012} {\left( \cos \left( \dfrac {i}{2} \right) \right)}^{0.751} {\left ( \dfrac {{\left( 1 - fv \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{0.739}} {{\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-0.467} {\left( \dfrac {\left( \rho_{\rm s} - \rho_{\rm p} \right)} {\rho_{\rm s}} \right)}^{-1.670} {\mu_{\rm r}}^{-0.112} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{-0.018} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-0.233}} & \text{Narasimha (2009)}\\ | ||
\\ | \\ | ||
K_\alpha {{ {{\left( \dfrac { | K_\alpha {{ {{\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{0.27\phantom{0}} {\left( \dfrac {V_{\rm t}^2} {gR_{\rm max}} \right)}^{0.016} {\left( \cos \left( \dfrac {i}{2} \right) \right)}^{0.868} {\left ( \dfrac {{\left( 1 - fv \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{0.72\phantom{0}}} } { {{\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-0.567} {\left( \dfrac {\left( \rho_{\rm s} - \rho_{\rm p} \right)} {\rho_{\rm s}} \right)}^{-1.837} {\mu_{\rm r}}^{-0.127} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{0.182\phantom{-}} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-0.2}} }} & \text{Narasimha et al. (2014)}\\ | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Line 532: | Line 604: | ||
Q = | Q = | ||
\begin{cases} | \begin{cases} | ||
K_{Q0} {\left( \dfrac { | K_{\rm Q0} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{0.45} {D_{\rm c}}^{2} \sqrt \dfrac P {\rho_{\rm p}} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{1.250} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{0.060} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{-0.405} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{0.330} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.047} {\left( \cos \left( \dfrac i 2 \right) \right)}^{-0.090} & \text{Narasimha (2009)}\\ | ||
\\ | \\ | ||
K_{Q0} {\left( \dfrac { | K_{\rm Q0} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{0.45} {D_{\rm c}}^{2} \sqrt \dfrac P {\rho_{\rm p}} {\left( \dfrac {D_{\rm o}} {d_c} \right)}^{1.099} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{0.037} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{-0.405} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{0.30\phantom{0}} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{-0.048} {\left( \cos \left( \dfrac i 2 \right) \right)}^{-0.092} & \text{Narasimha et al. (2014)}\\ | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Line 541: | Line 613: | ||
P = | P = | ||
\begin{cases} | \begin{cases} | ||
\ | \rho_{\rm p} \left [ Q {{K_{\rm Q0}}^{-1} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{-0.45} {D_{\rm c}}^{-2} {\left( \dfrac {D_{\rm o}} {D_{\rm c}} \right)}^{-1.250} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-0.060} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{0.405} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-0.330} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{0.047} {\left( \cos \left( \dfrac i 2 \right) \right)}^{0.090}} \right ]^2 & \text{Narasimha (2009)}\\ | ||
\\ | \\ | ||
\ | \rho_{\rm p} \left [ Q {{K_{\rm Q0}}^{-1} {\left( \dfrac {D_{\rm i}} {D_{\rm c}} \right)}^{-0.45} {D_{\rm c}}^{-2} {\left( \dfrac {D_{\rm o}} {d_c} \right)}^{-1.099} {\left( \dfrac {D_{\rm u}} {D_{\rm c}} \right)}^{-0.037} {\left( {\tan \left( \dfrac \theta 2 \right)} \right)}^{0.405} {\left( \dfrac {L_{\rm c}} {D_{\rm c}} \right)}^{-0.30\phantom{0}} {\left( \dfrac {{\left( 1 - f_{\rm v} \right)}^2} {10^{1.82f_{\rm v}}} \right)}^{0.048} {\left( \cos \left( \dfrac i 2 \right) \right)}^{0.092}} \right ]^2 & \text{Narasimha et al. (2014)}\\ | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
---> | ---> |
Latest revision as of 13:31, 1 May 2025
Description
This article describes the Narasimha-Mainza model for hydrocyclone size classification.
Narasimha et al. (2014a) describe an empirical hydrocyclone model that improves on the Plitt and Nageswararao approaches with the addition of several features:[1]
- A sharpness of separation equation
- A slurry viscosity term that includes the effects of very fine particles
- Terms for cyclone inclination, particle density, g-forces, flow regime (Reynolds Number) and turbulent diffusion
Narasimha et al. (2014b) subsequently presented a multi-component version of the same model, with revised equations for cut size and sharpness of separation per ore component:[2]
Model theory
![]() |
Efficiency curve
Corrected cut size
Liquids recovery
Sharpness of separation
Cyclone capacity
Multi-component modelling
Narasimha, Mainza and Holtham (2014)
Silveira, Delboni and Bergerman (2024)
Partition metrics
Roping
Additional notes
Note that the equations presented by Narasimha et al. (2014) differ from those presented in Narasimha's original dissertation.[3]
The user should be aware of which model formulation is being applied when adopting calibration parameters from external sources. Recalibration of model parameters via the Excel interface below is recommended in such cases.
Excel
The Narasimha-Mainza hydrocyclone model may be invoked from the Excel formula bar with the following function call:
=mdUnit_Hydrocyclone_NarasimhaMainza(Parameters as Range, Size as Range, Feed as Range, OreSG Range, Optional Kd0 as Range, Optional Kalpha0 as Range)
Invoking the function with no arguments will print Help text associated with the model, including a link to this page.
Inputs
The required inputs are defined below in matrix notation with elements corresponding to cells in Excel row () x column () format:
where:
- is the set of equations to use (0 = Narasimha et al. (2014), 1 = Narasimha et al. (Multi))
- indicates whether the number of cyclones required at the given feed flow rate and pressure set point is returned (TRUE) or the operating pressure at the given feed flowrate and number of cyclones is returned (FALSE)
- is the number of cyclones operating in a cluster. The number of cyclones is ignored if is TRUE (the value is returned in the results instead)
- , the operating pressure, is ignored if is FALSE (the value is returned in the results instead)
- is the density of liquids (fluids) in the feed (t/m3)
- is the size of the square mesh interval that feed mass is retained on (mm)
- is the number of ore types
- is feed solids mass flow rate by size and ore type (t/h)
- is the mass flow feed rate of liquids into the cyclone (t/h)
- indicates optional arrays to specify cut size and sharpness parameters by ore/mineral/class type. If either array is omitted (default), the and values supplied in the array are used instead.
Results
The results are displayed in Excel as an array corresponding to the matrix notation below:
where:
- is the number of cyclones required at the given and operating pressure , if = TRUE
- is the volumetric feed flow rate per cyclone (m3/h)
- is the total volumetric feed flow rate to the cluster of cyclones (m3/h)
- is the pressure drop across the cyclone cluster with operating at feed rate , if = FALSE (kPa)
- is actual split of liquids to the overflow (frac)
- is the mass flow rate of liquids to the overflow stream (t/h)
- is the mass flow rate of liquids to the underflow stream (t/h)
- is the SPOC roping limit of volume fraction solids in the underflow stream (v/v)
- is the Plitt roping limit of volumetric flow rate of solids in the underflow stream (m3/h)
- is the Plitt roping limit of volume fraction solids in the underflow stream (v/v)
- is the underflow discharge type based on the Bustamante geometry limits (spray or roping discharge)
- is the underflow discharge type based on the Concha geometry limits (spray or roping discharge)
- is mass flow rate of solids to the underflow stream (t/h)
- is mass flow rate of solids to the overflow stream (t/h)
- is the actual partition of all particles of size to the overflow stream, computed as (frac)
Example
The images below show the selection of input arrays and output results in the Excel interface.
SysCAD
The sections and variable names used in the SysCAD interface are described in detail in the following tables.
MD_Hydrocyclone page
The first tab page in the access window will have this name.
Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
---|---|---|
Tag | Display | This name tag may be modified with the change tag option. |
Condition | Display | OK if no errors/warnings, otherwise lists errors/warnings. |
ConditionCount | Display | The current number of errors/warnings. If condition is OK, returns 0. |
GeneralDescription / GenDesc | Display | This is an automatically generated description for the unit. If the user has entered text in the 'EqpDesc' field on the Info tab (see below), this will be displayed here.
If this field is blank, then SysCAD will display the unit class ID. |
Requirements | ||
On | CheckBox | This enables the unit. If this box is not checked, then the MassFracToUF option appears below. |
MassFracToUF | Input | Only appears if the On field above is not checked. Specifies the fraction of feed mass that reports to the underflow stream when the model is off. |
Method | Partition (User) | The partition to overflow for each size interval is defined by the user. Different values can be used for different solids. |
Partition (Reid-Plitt) | The partition to overflow for each size interval is defined by a Reid-Plitt efficiency curve. Different parameters can be used for different solids. | |
Partition (Whiten-Beta) | The partition to overflow for each size interval is defined by a Whiten-Beta efficiency curve. Different parameters can be used for different solids. | |
Nageswararao | The Nageswararao model is used to determine the partition of solids to underflow and overflow for each size interval. | |
Narasimha-Mainza (2014) | The Narasimha-Mainza (2014) model is used to determine the partition of solids to underflow and overflow for each size interval. | |
Narasimha-Mainza (Multi) | The Narasimha-Mainza (Multi) model is used to determine the partition of solids to underflow and overflow for each size interval. | |
Plitt | The Plitt model is used to determine the partition of solids to underflow and overflow for each size interval. | |
RopingCalcs | CheckBox | Show addition calculations that predict the onset of cyclone underflow roping. |
Options | ||
ShowQFeed | CheckBox | QFeed and associated tab pages (eg Sp) will become visible, showing the properties of the combined feed stream. |
ShowQOF | CheckBox | QOF and associated tab pages (eg Sp) will become visible, showing the properties of the overflow stream. |
ShowQUF | CheckBox | QUF and associated tab pages (eg Sp) will become visible, showing the properties of the underflow stream. |
SizeForPassingFracCalc | Input | Size fraction for % Passing calculation. The size fraction input here will be shown in the Stream Summary section. |
FracForPassingSizeCalc | Input | Fraction passing for Size calculation. The fraction input here will be shown in the Stream Summary section. |
Stream Summary | ||
MassFlow / Qm | Display | The total mass flow in each stream. |
SolidMassFlow / SQm | Display | The Solids mass flow in each stream. |
LiquidMassFlow / LQm | Display | The Liquid mass flow in each stream. |
VolFlow / Qv | Display | The total Volume flow in each stream. |
Temperature / T | Display | The Temperature of each stream. |
Density / Rho | Display | The Density of each stream. |
SolidFrac / Sf | Display | The Solid Fraction in each stream. |
LiquidFrac / Lf | Display | The Liquid Fraction in each stream. |
Passing | Display | The mass fraction passing the user-specified size (in the field SizeForPassingFracCalc) in each stream. |
Passes | Display | The user-specified (in the field FracForPassesSizeCalc) fraction of material in each stream will pass this size fraction. |
Cyclone page
The Cyclone page is used to specify the input parameters for the hydrocyclone model.
Partition page
The Partition page is used to display (or specify) the partition by species/component/element/individual phase and size values.
Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
---|---|---|
Distribution | ||
Name | Display | Shows the name of the SysCAD Size Distribution (PSD) quality associated with the feed stream. |
IntervalCount | Display | Shows the number of size intervals in the SysCAD Size Distribution (PSD) quality associated with the feed stream. |
SpWithPSDCount | Display | Shows the number of species in the feed stream assigned with the SysCAD Size Distribution (PSD) quality. |
Partition | ||
Method | Model/User | Select model-calculated or user-defined partition to separate each solids species type. |
Density | Display | Density of each solid species. |
Size | Display | Size of each interval in mesh series. |
MeanSize | Display | Geometric mean size of each interval in mesh series. |
All (All column) | Display |
|
Partition | Display |
|
All (All row, All column) | Display |
|
All (All row, per species) | Display |
|
CmpPartition | ||
Components | Hides or shows component partition table. | |
Size | Display | Size of each interval in mesh series. |
MeanSize | Display | Geometric mean size of each interval in mesh series. |
All (All column) | Display |
|
CmpPartition | Display |
|
All (All row, All column) | Display |
|
All (All row, per component) | Display |
|
ElePartition | ||
Elements | Hides or shows element partition table. | |
Size | Display | Size of each interval in mesh series. |
MeanSize | Display | Geometric mean size of each interval in mesh series. |
All (All column) | Display |
|
ElePartition | Display |
|
All (All row, All column) | Display |
|
All (All row, per element) | Display |
|
IPhPartition | ||
IPhases | Hides or shows individual phases partition table. | |
Size | Display | Size of each interval in mesh series. |
MeanSize | Display | Geometric mean size of each interval in mesh series. |
All (All column) | Display |
|
IPhPartition | Display |
|
All (All row, All column) | Display |
|
All (All row, per individual phase) | Display |
|
Roping page
This page displays the results for hydrocyclone roping limit calculations. The page is only visible if Roping is selected on the MD_Hydrocyclone page.
Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
---|---|---|
Roping | ||
Underflow | ||
SolidsVolFlow / SQv | Display | Volumetric flow rate of solids in cyclone underflow stream. |
Plitt.MSu | Display | Plitt's volumetric flow rate of solids in cyclone underflow roping limit. |
SolidsVolFrac / Svf | Display | Volume fraction of solids in the cyclone underflow stream. |
SPOC | Display | SPOC volume fraction of solids in the cyclone underflow roping limit. |
Plitt.phiL | Display | Plitt's volume fraction of solids in the cyclone underflow roping limit. |
Geometry | ||
BCondition | Display | Text string describing the spray/roping condition of the cyclone based on Bustamante's geometry limits. |
CCondition | Display | Text string describing the spray/roping condition of the cyclone based on the Concha et al. geometry limits. |
About page
This page is provides product and licensing information about the Met Dynamics Models SysCAD Add-On.
Tag (Long/Short) | Input / Display | Description/Calculated Variables/Options |
---|---|---|
About | ||
HelpLink | ![]() |
Opens a link to the Installation and Licensing page using the system default web browser. Note: Internet access is required. |
Information | ![]() |
Copies Product and License information to the Windows clipboard. |
Product | ||
Name | Display | Met Dynamics software product name |
Version | Display | Met Dynamics software product version number. |
BuildDate | Display | Build date and time of the Met Dynamics Models SysCAD Add-On. |
License | ||
File | ![]() |
This is used to locate a Met Dynamics software license file. |
Location | Display | Type of Met Dynamics software license or file name and path of license file. |
SiteCode | Display | Unique machine identifier for license authorisation. |
ReqdAuth | Display | Authorisation level required, MD-SysCAD Full or MD-SysCAD Runtime. |
Status | Display | License status, LICENSE_OK indicates a valid license, other messages report licensing errors. |
IssuedTo | Display | Only visible if Met Dynamics license file is used. Name of organisation/seat the license is authorised to. |
ExpiryDate | Display | Only visible if Met Dynamics license file is used. License expiry date. |
DaysLeft | Display | Only visible if Met Dynamics license file is used. Days left before the license expires. |
Additional notes
- Solid species that do not possess a particle size distribution property are split according to the overall mass split of the default particle size distribution species selected in the SysCAD Project Configuration.
- If the default particle size distribution species is not present in the unit feed, the overall split of all other species with particle size distributions combined is used, as determined by the model.
- Gas phase species report directly to the overflow stream without split.
See also
External links
- Crushing and Grinding Example project (help.syscad.net)
- Crushing, Grinding and Flotation Example project (help.syscad.net)
- Gravity, Dense Medium, and Magnetic Separation Example project (help.syscad.net)
- Dynamic Grinding Example project (help.syscad.net)
References
- ↑ Narasimha, M., Mainza, A.N., Holtham, P.N., Powell, M.S. and Brennan, M.S., 2014. A semi-mechanistic model of hydrocyclones—Developed from industrial data and inputs from CFD. International Journal of Mineral Processing, 133, pp.1-12.
- ↑ Narasimha, M., Crasta, J, Sreenivas, T. and Mainza, A. N., 2014. Performance of hydrocyclone separating bi-component mixture. In Proceedings of the XXVII International Mineral Processing Congress, Santiago, Chile, 2014.
- ↑ Narasimha, M., 2009. Improved Computational and Empirical Models of Hydrocyclones. PhD Thesis, University of Queensland (unpublished).