Tumbling Mill (Power, Hogg and Fuerstenau): Difference between revisions
md>Scott.Munro m (→SysCAD) |
Scott Munro (talk | contribs) m (1 revision imported) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 9: | Line 9: | ||
The Hogg and Fuerstenau method adopts the simplified charge geometry shown in Figure 1, and computes mill power as:{{Sepulveda_(2001)}} | The Hogg and Fuerstenau method adopts the simplified charge geometry shown in Figure 1, and computes mill power as:{{Sepulveda_(2001)}} | ||
:<math>P_{net}=\eta P_{gross} = 0.238D^{3.5} \left (\frac{L}{D} \right ) | :<math>P_{\rm net}=\eta P_{\rm gross} = 0.238D^{3.5} \left (\frac{L}{D} \right ) N_{\rm c} \rho_{\rm ap} (J - 1.065J^2)sin \alpha</math> | ||
where: | where: | ||
* <math>P_{net}</math> is the net power draw of the mill, i.e. excluding mill drive losses (kW) | * <math>P_{\rm net}</math> is the net power draw of the mill, i.e. excluding mill drive losses (kW) | ||
* <math>P_{gross}</math> is the gross power draw of the mill, i.e. including mill drive losses (kW) | * <math>P_{\rm gross}</math> is the gross power draw of the mill, i.e. including mill drive losses (kW) | ||
* <math>\eta</math> is the mill drive efficiency (kW/kW) | * <math>\eta</math> is the mill drive efficiency (kW/kW) | ||
* <math>D</math> is mill diameter (ft) | * <math>D</math> is mill diameter (ft) | ||
* <math>L</math> is mill length (ft) | * <math>L</math> is mill length (ft) | ||
* <math> | * <math>N_{\rm c}</math> is mill [[Tumbling Mill (Speed)|fraction critical speed]] (frac) | ||
* <math>\rho_{ap}</math> is the apparent density of the mill charge (t/m<sup>3</sup>) | * <math>\rho_{\rm ap}</math> is the apparent density of the mill charge (t/m<sup>3</sup>) | ||
* <math>J</math> is the volumetric fraction of the mill filled with charge, including balls and interstitial voids between balls (v/v) | * <math>J</math> is the volumetric fraction of the mill filled with charge, including balls and interstitial voids between balls (v/v) | ||
* <math>\alpha</math> is the charge lift angle (degrees) | * <math>\alpha</math> is the charge lift angle (degrees) | ||
The apparent charge density, <math>\rho_{ap}</math>, may be computed as: | The apparent charge density, <math>\rho_{\rm ap}</math>, may be computed as: | ||
:<math> | :<math> | ||
\rho_{ap} = | \rho_{\rm ap} = | ||
\begin{cases} | \begin{cases} | ||
\dfrac{(1- | \dfrac{(1-f_{\rm v}) \rho_{\rm b}J_{\rm b} + (1-f_{\rm v}) \rho_{\rm m} (J - J_{\rm b}) + \rho_{\rm p} J_{\rm p} f_{\rm v} J}{J} & \text{for autogenous or semi-autogenous mills}\\ | ||
\dfrac{(1- | \dfrac{(1-f_{\rm v}) \rho_{\rm b}J_{\rm b} + \rho_{\rm p}J_{\rm p}f_{\rm v}J_{\rm b} + \rho_{\rm p}(J-J_{\rm b})}{J} & \text{for ball or rod mills} | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
where: | where: | ||
* <math> | * <math>f_{\rm v}</math> is the volumetric fraction of interstitial void space in the charge (usually 0.4) (v/v) | ||
* <math>\ | * <math>\rho_{\rm b}</math> is the density of balls (t/m<sup>3</sup>) | ||
* <math>\ | * <math>\rho_{\rm m}</math> is the density of solid ore particles (t/m<sup>3</sup>) | ||
* <math>\ | * <math>\rho_{\rm p}</math> is the density of slurry (t/m<sup>3</sup>) | ||
* <math> | * <math>J_{\rm b}</math> is the volumetric fraction of the mill filled with balls, including slurry and interstitial voids between balls (v/v) | ||
* <math> | * <math>J_{\rm p}</math> is the volumetric fraction of the interstitial charge void space occupied by slurry (v/v) | ||
Slurry density, <math>\rho_{p}</math>, may be computed as: | Slurry density, <math>\rho_{\rm p}</math>, may be computed as: | ||
:<math>\rho_{p} = \ | :<math>\rho_{\rm p} = \dfrac{1}{\dfrac{f_{\rm s}}{\rho_{\rm m}} + (1-f_{\rm s})}</math> | ||
where <math> | where <math>f_{\rm s}</math> is the mass fraction of solids in the slurry (w/w). | ||
The net power draw, <math>P_{net}</math>, may be separated into its contributing constituents: | The net power draw, <math>P_{\rm net}</math>, may be separated into its contributing constituents: | ||
:<math> | :<math>P_{\rm b}=\left ( \frac{(1-f_{\rm v}) \rho_{\rm b} J_{\rm b} }{\rho_{\rm ap}J} \right ) \cdot P_{\rm net}</math> | ||
:<math> | :<math>P_{\rm r}=\left ( \frac{(1-f_{\rm v}) \rho_{\rm m} (J - J_{\rm b})}{\rho_{\rm ap}J} \right ) \cdot P_{\rm net}</math> | ||
:<math> | :<math>P_{\rm s}=\left ( \frac{\rho_{\rm p} J_{\rm p}f_{\rm v} J_{\rm b} }{\rho_{\rm ap}J} \cdot \right ) \cdot P_{\rm net}</math> | ||
:<math> | :<math>P_{\rm o}=\left ( \frac{\rho_{\rm p} (J - J_{\rm b})}{\rho_{\rm ap}J} \cdot \right ) \cdot P_{\rm net}</math> | ||
where: | where: | ||
* <math> | * <math>P_{\rm b}</math> is the power drawn by the ball component of the mill load (kW) | ||
* <math> | * <math>P_{\rm r}</math> is the power drawn by the rock (coarse ore) component of the mill load (kW). Autogenous and semi-autogenous mills only. | ||
* <math> | * <math>P_{\rm s}</math> is the power drawn by the interstitial slurry component of the mill load (kW) | ||
* <math> | * <math>P_{\rm o}</math> is the power drawn by the overfilling, or excess, slurry component of the mill load (when the interstitial voids are completely filled with slurry (kW). Ball mills only. | ||
<!-- | |||
== Additional notes== | == Additional notes== | ||
Line 77: | Line 78: | ||
Lift angle may alternatively be employed as a 'fitting parameter' for existing power draw measurements and subsequently used to predict power draw under differing conditions, at the user's discretion. | Lift angle may alternatively be employed as a 'fitting parameter' for existing power draw measurements and subsequently used to predict power draw under differing conditions, at the user's discretion. | ||
--> | |||
== Excel == | == Excel == | ||
Line 96: | Line 98: | ||
D\text{ (m)}\\ | D\text{ (m)}\\ | ||
L\text{ (m)}\\ | L\text{ (m)}\\ | ||
N_{\rm c}\text{ (frac)}\\ | |||
J\text{ (v/v)}\\ | J\text{ (v/v)}\\ | ||
J_{\rm b}\text{ (v/v)}\\ | |||
J_{\rm p}\text{ (v/v)}\\ | |||
\alpha\text{ (deg.)}\\ | \alpha\text{ (deg.)}\\ | ||
(1-\eta)\text{ (kW/kW)}\\ | (1-\eta)\text{ (kW/kW)}\\ | ||
f_{\rm s}\text{ (w/w)}\\ | |||
\ | \rho_{\rm m}\text{ (t/m}^{\text{3}}\text{)}\\ | ||
\ | \rho_{\rm b}\text{ (t/m}^{\text{3}}\text{)}\\ | ||
f_{\rm v}\text{ (v/v)}\\ | |||
\end{bmatrix},\;\;\;\;\;\; | \end{bmatrix},\;\;\;\;\;\; | ||
mdMillPower\_HoggFuerstenau= | mdMillPower\_HoggFuerstenau= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
P_{gross}\text{ (kw)}\\ | P_{\rm gross}\text{ (kw)}\\ | ||
P_{net}\text{ (kw)}\\ | P_{\rm net}\text{ (kw)}\\ | ||
P_{\rm b}\text{ (kw)}\\ | |||
P_{\rm r}\text{ (kw)}\\ | |||
P_{\rm s}\text{ (kw)}\\ | |||
P_{\rm o}\text{ (kw)}\\ | |||
\text{Charge volume (m}^{\text{3}}\text{)}\\ | \text{Charge volume (m}^{\text{3}}\text{)}\\ | ||
\text{Ball mass (t)}\\ | \text{Ball mass (t)}\\ | ||
Line 120: | Line 123: | ||
\text{Interstital slurry mass (t)}\\ | \text{Interstital slurry mass (t)}\\ | ||
\text{Above balls slurry mass (t)}\\ | \text{Above balls slurry mass (t)}\\ | ||
\ | \rho_{\rm p}\text{ (t/m}^{\text{3}}\text{)}\\ | ||
\rho_{ | \rho_{\rm ap}\text{ (t/m}^{\text{3}}\text{)}\\ | ||
\end{bmatrix}\;\;\;\;\;\;\;\;\;\;\;\; | \end{bmatrix}\;\;\;\;\;\;\;\;\;\;\;\; | ||
</math> | </math> | ||
Line 151: | Line 154: | ||
|- | |- | ||
|MillType | |MillType | ||
|style="background: #eaecf0" | AG/SAG or Ball | |style="background: #eaecf0" | AG/SAG or Ball/Rod | ||
|Type of mill, AG/SAG (''RockMass'', no ''AboveBallsSLMass'') or Ball (''AboveBallsSLMass'', no ''RockMass''). | |Type of mill, AG/SAG (''RockMass'', no ''AboveBallsSLMass'') or Ball (''AboveBallsSLMass'', no ''RockMass''). | ||
|- | |- | ||
Line 197: | Line 200: | ||
|style="background: #eaecf0" | Input/Display | |style="background: #eaecf0" | Input/Display | ||
|Density of balls. | |Density of balls. | ||
|- | |||
|Voidage | |||
|style="background: #eaecf0" | Input/Display | |||
|Volumetric fraction of interstitial void space in the charge | |||
|- | |- | ||
|ChargeVolume | |ChargeVolume |
Latest revision as of 08:31, 26 March 2023
Description
This article describes the Hogg and Fuerstenau (1972) method for estimating the power draw of a tumbling mill.[1]
Model theory
The Hogg and Fuerstenau method adopts the simplified charge geometry shown in Figure 1, and computes mill power as:[2]
where:
- is the net power draw of the mill, i.e. excluding mill drive losses (kW)
- is the gross power draw of the mill, i.e. including mill drive losses (kW)
- is the mill drive efficiency (kW/kW)
- is mill diameter (ft)
- is mill length (ft)
- is mill fraction critical speed (frac)
- is the apparent density of the mill charge (t/m3)
- is the volumetric fraction of the mill filled with charge, including balls and interstitial voids between balls (v/v)
- is the charge lift angle (degrees)
The apparent charge density, , may be computed as:
where:
- is the volumetric fraction of interstitial void space in the charge (usually 0.4) (v/v)
- is the density of balls (t/m3)
- is the density of solid ore particles (t/m3)
- is the density of slurry (t/m3)
- is the volumetric fraction of the mill filled with balls, including slurry and interstitial voids between balls (v/v)
- is the volumetric fraction of the interstitial charge void space occupied by slurry (v/v)
Slurry density, , may be computed as:
where is the mass fraction of solids in the slurry (w/w).
The net power draw, , may be separated into its contributing constituents:
where:
- is the power drawn by the ball component of the mill load (kW)
- is the power drawn by the rock (coarse ore) component of the mill load (kW). Autogenous and semi-autogenous mills only.
- is the power drawn by the interstitial slurry component of the mill load (kW)
- is the power drawn by the overfilling, or excess, slurry component of the mill load (when the interstitial voids are completely filled with slurry (kW). Ball mills only.
Excel
The Hogg and Fuerstenau mill power model may be invoked from the Excel formula bar with the following function call:
=mdMillPower_HoggFuerstenau(Parameters as Range)
Invoking the function with no arguments will print Help text associated with the model, including a link to this page.
The Parameters array and model results are defined below in matrix notation, along with an example image showing the selection of the same arrays in the Excel interface:
|
Please note the Excel function expects the mill diameter () and length () values in units of meters, which are internally converted to feet for use in the power equation presented above.
SysCAD
The Hogg and Fuerstenau power model is an optional calculation for tumbling mill units. If selected, the input and display parameters below are shown.