Blasting (KCO)
Description
This article describes the Kuznetsov–Cunningham–Ouchterlony (KCO) model (Ouchterlony, 2005), also known as the Swebrec function, for predicting rock fragmentation by blasting.[1]
Model theory
Excel
The KOC blasting model may be invoked from the Excel formula bar with the following function call:
=mdUnit_Blasting_KCO(Parameters as Range, Size as Range)
Invoking the function with no arguments will print Help text associated with the model, including a link to this page.
Inputs
The required inputs are defined below in matrix notation with elements corresponding to cells in Excel row ([math]\displaystyle{ i }[/math]) x column ([math]\displaystyle{ j }[/math]) format:
- [math]\displaystyle{ Parameters= \begin{bmatrix} H\text{ (m)}\\ B\text{ (m)}\\ S\text{ (m)}\\ \phi_{\rm h}\text{ (m)}\\ L_{\rm b}\text{ (m)}\\ L_{\rm c}\text{ (m)}\\ L_{\rm Tot}\text{ (m)}\\ \sigma\text{ (m)}\\ Q\text{ (kg)}\\ q\text{ (kg/m}^3\text{)}\\ s_{\rm ANFO}\text{ (}%\text{)}\\ \rho\text{ (t/m}^3\text{)}\\ \sigma_{\rm c}\text{ (MPa)}\\ E\text{ (GPa)}\\ \text{In-situ block size (m)}\\ \text{RMD}\\ \end{bmatrix},\;\;\;\;\;\; Size = \begin{bmatrix} d_{1}\text{ (mm)}\\ \vdots\\ d_n\text{ (mm)}\\ \end{bmatrix} }[/math]
where:
- [math]\displaystyle{ H }[/math] is the bench height or hole depth (m)
- [math]\displaystyle{ B }[/math] is Burden (m)
- [math]\displaystyle{ S }[/math] is Spacing (m)
- [math]\displaystyle{ \phi_{\rm h} }[/math] is drill hole diameter (m)
- [math]\displaystyle{ L_{\rm b} }[/math] is the length of bottom charge (m)
- [math]\displaystyle{ L_{\rm c} }[/math] is the length of column charge (m)
- [math]\displaystyle{ L_{\rm Tot} }[/math] is the total charge length, (m)
- [math]\displaystyle{ \sigma }[/math] is the standard deviation drilling accuracy (m)
- [math]\displaystyle{ Q }[/math] is Charge weight per hole (kg)
- [math]\displaystyle{ q }[/math] is Specific charge (kg/m3)
- [math]\displaystyle{ s_{\rm ANFO} }[/math] is ANFO relative weight strength (%)
- [math]\displaystyle{ \rho }[/math] is rock density (t/m3)
- [math]\displaystyle{ \sigma_{\rm c} }[/math] is compressive strength (MPa)
- [math]\displaystyle{ E }[/math] is Young's modulus (GPa)
- [math]\displaystyle{ \text{In-situ block size} }[/math] is in situ block size (m)
- [math]\displaystyle{ \text{RMD} }[/math] is Rock Mass Description
- [math]\displaystyle{ n }[/math] is the number of size intervals
- [math]\displaystyle{ d_i }[/math] is the size of the square mesh interval that mass is retained on (mm)
- [math]\displaystyle{ d_{i+1}\lt d_i\lt d_{i-1} }[/math], i.e. descending size order from top size ([math]\displaystyle{ d_{1} }[/math]) to sub mesh ([math]\displaystyle{ d_{n}=0 }[/math] mm)
Results
The results are displayed in Excel as an array corresponding to the matrix notation below:
- [math]\displaystyle{ \mathit{mdUnit\_Blasting\_KCO} = \begin{bmatrix} \begin{bmatrix} \text{RMD}\\ H_{\rm f}\\ x_{\rm Max}\text{ (mm)}\\ n\\ g(h)\\ x_{50}\text{ (mm)}\\ b\\ \end{bmatrix} & \begin{array}{c} \begin{bmatrix} \mathit{CFP}_1\text{ (w/w)}\\ \vdots\\ \mathit{CFP}_n\text{ (w/w)} \end{bmatrix} \\ \\ \\ \\ \end{array} \end{bmatrix} }[/math]
where:
- [math]\displaystyle{ H_{\rm f} }[/math] is the hardness factor
- [math]\displaystyle{ x_{\rm Max} }[/math] is the maximum size parameter of the Swebrec function (mm)
- [math]\displaystyle{ n }[/math] is the uniformity exponent parameter of the Swebrec function
- [math]\displaystyle{ g(n) }[/math] is a function parameter of the Swebrec function
- [math]\displaystyle{ x_{\rm 50} }[/math] is the mean size parameter of the Swebrec function (mm)
- [math]\displaystyle{ b }[/math] is an exponent parameter of the Swebrec function
- [math]\displaystyle{ \mathit{CFP}_i }[/math] is the cumulative fraction passing size interval [math]\displaystyle{ i }[/math] (w/w)
Example
The images below show the selection of input arrays and output results in the Excel interface.
References
- ↑ Ouchterlony, F., 2005. The Swebrec© function: linking fragmentation by blasting and crushing. Mining Technology, 114(1), pp.29-44.


