Fine Wet Screen (Mwale)
Jump to navigation
Jump to search
Description
This article describes an implementation of the Mwale (Mwale et al., 2016) model for fine wet screening.[1]
Model theory
Excel
The Mwale fine wet screen model may be invoked from the Excel formula bar with the following function call:
=mdUnit_Screen_Mwale(Parameters as Range, Size as Range, Feed as Range)
Invoking the function with no arguments will print Help text associated with the model, including a link to this page.
Inputs
The required inputs are defined below in matrix notation with elements corresponding to cells in Excel row ([math]\displaystyle{ i }[/math]) x column ([math]\displaystyle{ j }[/math]) format:
- [math]\displaystyle{ Parameters= \begin{bmatrix} K\text{ (t/h.m}^2\text{)}\\ \delta\text{ ((t/h)}^{-1}\text{)}\\ \alpha\text{ (-)}\\ A_{\rm o}\text{ (m}^2\text{)}\\ x_{\rm a} \text{ (mm)}\\ s\text{ (w/w)}\\ \end{bmatrix},\;\;\;\;\;\; Size = \begin{bmatrix} d_{1}\text{ (mm)}\\ \vdots\\ d_n\text{ (mm)}\\ \end{bmatrix},\;\;\;\;\;\; Feed= \begin{bmatrix} (Q_{\rm M,F})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,F})_{1m}\text{ (t/h)}\\ \vdots & \ddots & \vdots\\ (Q_{\rm M,F})_{n1}\text{ (t/h)} & \dots & (Q_{\rm M,F})_{nm}\text{ (t/h)}\\ \end{bmatrix} }[/math]
where:
- [math]\displaystyle{ K }[/math] is the kinetic parameter (t/h.m2)
- [math]\displaystyle{ \delta }[/math] is a bypass parameter ((t/h)-1)
- [math]\displaystyle{ \alpha }[/math] is the sharpness parameter (-)
- [math]\displaystyle{ A_{\rm o} }[/math] is the screen open area (m2)
- [math]\displaystyle{ x_{\rm a} }[/math] is the screen aperture (mm)
- [math]\displaystyle{ s }[/math] is the mass fraction of solids in the feed slurry (w/w)
- [math]\displaystyle{ n }[/math] is the number of size intervals
- [math]\displaystyle{ d_i }[/math] is the size of the square mesh interval that feed mass is retained on (mm)
- [math]\displaystyle{ d_{i+1}\lt d_i\lt d_{i-1} }[/math], i.e. descending size order from top size ([math]\displaystyle{ d_{1} }[/math]) to sub mesh ([math]\displaystyle{ d_{n}=0 }[/math] mm)
- [math]\displaystyle{ m }[/math] is the number of ore types
- [math]\displaystyle{ Q_{\rm M,F} }[/math] is feed solids mass flow rate by size and ore type (t/h)
Results
The results are displayed in Excel as an array corresponding to the matrix notation below:
- [math]\displaystyle{ \mathit{mdUnit\_Screen\_Mwale} = \begin{bmatrix} \begin{array}{c} \begin{bmatrix} E_{\rm US}\\ \end{bmatrix} \\ \\ \\ \end{array} & \begin{bmatrix} \bar d_1\text{ (mm)}\\ \vdots\\ \bar d_n\text{ (mm)} \end{bmatrix} & \begin{bmatrix} (Q_{\rm M,OS})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,OS})_{1m}\text{ (t/h)}\\ \vdots & \ddots & \vdots\\ (Q_{\rm M,OS})_{n1}\text{ (t/h)} & \dots & (Q_{\rm M,OS})_{nm}\text{ (t/h)}\\ \end{bmatrix} & \begin{bmatrix} (Q_{\rm M,US})_{11}\text{ (t/h)} & \dots & (Q_{\rm M,US})_{1m}\text{ (t/h)}\\ \vdots & \ddots & \vdots\\ (Q_{\rm M,US})_{n1}\text{ (t/h)} & \dots & (Q_{\rm M,US})_{nm}\text{ (t/h)}\\ \end{bmatrix} & \begin{bmatrix} (E_{\rm oa})_1\text{ (frac)}\\ \vdots\\ (E_{\rm oa})_n\text{ (frac)} \end{bmatrix} \end{bmatrix} }[/math]
where:
- [math]\displaystyle{ E_{\rm US} }[/math] is the efficiency of undersize removal achieved by the screen (frac)
- [math]\displaystyle{ \bar d_{i} }[/math] is the geometric mean size of particles in size interval [math]\displaystyle{ i }[/math] (mm)
- [math]\displaystyle{ Q_{\rm M,OS} }[/math] is mass flow rate of solids to the oversize stream (t/h)
- [math]\displaystyle{ Q_{\rm M,US} }[/math] is mass flow rate of solids to the undersize stream (t/h)
- [math]\displaystyle{ E_{\rm oa} }[/math] is the partition to oversize (frac)
Example
The images below show the selection of input arrays and output results in the Excel interface.
SysCAD
References
- ↑ Mwale, A.N., Mainza, A.N., Bepswa, P.A., Simukanga, S., Masinja, J.H., 2016. MODEL FOR FINE WET SCREENING. In XXVIII International Mineral Processing Congress Proceedings. Canadian Institute of Mining, Metallurgy and Petroleum.


